A look at hadronization via high multiplicity.

التفاصيل البيبلوغرافية
العنوان: A look at hadronization via high multiplicity.
المؤلفون: Kokoulina, Elena, Kutov, Andrey, Nikitin, Vladimir, Riadovikov, Vasilii, Vorobiev, Alexander, Bondarenko, S., Burov, V., Malakhov, A.
المصدر: EPJ Web of Conferences; 2019, Vol. 204, pN.PAG-N.PAG, 7p
مصطلحات موضوعية: MULTIPLICITY of hadrons, QUANTUM chromodynamics, NUCLEAR physics experiments, GLUONS, PHENOMENOLOGICAL theory (Physics)
مستخلص: Multiparticle production is studied experimentally and theoretically in QCD that describes interactions in the language of quarks and gluons. In the experiment the real hadrons are registered. Various phenomenological models are used for transfer from quarks and gluons to observed hadrons. In order to describe the high multiplicity region, we have developed a gluon dominance model (GDM). It represents a convolution of two stages. The first stage is described as a part of QCD. For the second one (hadronization), the phenomenological model is used. To describe hadronization, a scheme has been proposed, consistent with the experimental data in the region of its dominance. Comparison of this model with data on e+e- annihilation over a wide energy interval (up to 200 GeV) has confirmed the fragmentation mechanism of hadronization, the development of the quark-gluon cascade with energy increase and domination of bremsstrahlung gluons. The description of topological cross sections in pp collisions within GDM testifies that in hadron collisions the mechanism of hadronization is being replaced by the recombination one. At that point, gluons play an active role in the multiparticle production process, and valence quarks are passive. They stay in the leading particles, and only the gluon splitting is responsible for the region of high multiplicity. GDM with inclusion of intermediate quark charged topologies describes topological cross sections in pp̅ annihilation and explains initial linear growth in the region of negative values of a secondary correlative momentum vs average pion multiplicity with increasing of energy. The proposed hadronization scheme can describe the basic processes of multiparticle production. [ABSTRACT FROM AUTHOR]
Copyright of EPJ Web of Conferences is the property of EDP Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:21016275
DOI:10.1051/epjconf/201920406009