دورية أكاديمية

Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event.

التفاصيل البيبلوغرافية
العنوان: Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event.
المؤلفون: Ruiz-Donoso, Elena, Ehrlich, André, Schäfer, Michael, Jäkel, Evelyn, Schemann, Vera, Crewell, Susanne, Mech, Mario, Kulla, Birte Solveig, Kliesch, Leif-Leonard, Neuber, Roland, Wendisch, Manfred
المصدر: Atmospheric Chemistry & Physics Discussions; 2019, p1-31, 31p
مستخلص: The synergy between airborne lidar, radar, passive microwave, and passive imaging spectrometer measurements was used to characterize the vertical and small-scale (down to 10 m) horizontal distribution of the cloud thermodynamic phase. Two case studies of low-level Arctic clouds in a cold air outbreak and a warm air advection observed during the Arctic Cloud Observations Using airborne measurements during polar Day (ACLOUD) were investigated. Both clouds exhibited the typical vertical mixed-phase structure with mostly liquid water droplets at cloud top and ice crystals in lower layers. The cloud top horizontal small-scale variability observed during the cold air outbreak is dominated by the liquid water close to the cloud top and shows no indication of ice in lower cloud layers. Contrastingly, the cloud top variability of the case observed during a warm air advection showed some ice in areas of low reflectivity or cloud holes. Radiative transfer simulations considering homogeneous mixtures of liquid water droplets and ice crystals were able to reproduce the horizontal variability of this warm air advection. To account for more realistic vertical distributions of the thermodynamic phase, large eddy simulations (LES) were performed to reconstruct the observed cloud properties and were used as input for radiative transfer simulations. The simulations of the cloud observed during the cold air outbreak, with mostly liquid water at cloud top, realistically reproduced the observations. For the warm air advection case, the simulated cloud field underestimated the ice water content (IWC). Nevertheless, it revealed the presence of ice particles close to the cloud top and confirmed the observed horizontal variability of the cloud field. It is concluded that the cloud top small-scale horizontal variability reacts to changes in the vertical distribution of the cloud thermodynamic phase. Passive satellite-borne imaging spectrometer observations with pixel sizes larger than 100 m miss the small-scale cloud top structures, which limits their capabilities to provide indications about the cloud vertical structure. [ABSTRACT FROM AUTHOR]
Copyright of Atmospheric Chemistry & Physics Discussions is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:16807367
DOI:10.5194/acp-2019-960