دورية أكاديمية

On the potential of variational calibration for a fully distributed hydrological model: application on a Mediterranean catchment.

التفاصيل البيبلوغرافية
العنوان: On the potential of variational calibration for a fully distributed hydrological model: application on a Mediterranean catchment.
المؤلفون: Jay-Allemand, Maxime, Javelle, Pierre, Gejadze, Igor, Arnaud, Patrick, Malaterre, Pierre-Olivier, Fine, Jean-Alain, Organde, Didier
المصدر: Hydrology & Earth System Sciences Discussions; 2019, p1-24, 24p
مستخلص: Flash flood alerts in metropolitan France are provided by SCHAPI (Service Central Hydrométéorologique et d'Appui à la Prévision des Inondations) through the Vigicrues Flash service, which is designed to work in ungauged catchments. The AIGA method implemented in Vigicrues Flash is designed for flood forecasting on small- and medium-scale watersheds. It is based on a distributed hydrological model accounting for spatial variability of the rainfall and the catchment properties, based on the radar rainfall observation inputs. Calibration of distributed parameters describing these properties with high resolution is difficult, both technically (in terms of the estimation method), and because of the identifiability issues. Indeed, the number of parameters to be calibrated is much greater than the number of spatial locations where the discharge observations are usually available. However, the flood propagation is a dynamic process, so observations have also a temporal dimension. This must be larger enough to comprise a representative set of events. In order to fully benefit from using the AIGA method, we consider its hydrological model (GRD) in combination with the variational estimation (data assimilation) method. In this method, the optimal set of parameters is found by minimizing the objective function which includes the misfit between the observed and predicted values and some additional constraints. The minimization process requires the gradient of the cost function with respect to all control parameters, which is efficiently computed using the adjoint model. The variational estimation method is scalable, fast converging, and offers a convenient framework for introducing additional constraints relevant to hydrology. It can be used both for calibrating the parameters and estimating the initial state of the hydrological system for short range forecasting (in a manner used in weather forecasting). The study area is the Gardon d'Anduze watershed where four gauging stations are available. In numerical experiments, the benefits of using the distributed against the uniform calibration are analysed in terms of the model predictive performance. Distributed calibration shows encouraging results with better model prediction at gauged and ungauged locations. [ABSTRACT FROM AUTHOR]
Copyright of Hydrology & Earth System Sciences Discussions is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:18122108
DOI:10.5194/hess-2019-331