دورية أكاديمية

Solar radiometer sensing of multi-year aerosol features over a tropical urban station: Direct Sun and inversion products.

التفاصيل البيبلوغرافية
العنوان: Solar radiometer sensing of multi-year aerosol features over a tropical urban station: Direct Sun and inversion products.
المؤلفون: Vijayakumar, Katta, Devara, Panuganti C. S., Sonbawne, Sunil M., Giles, David M., Holben, Brent N., Bhaskara Rao, Sarangam Vijaya, Jayasankar, Chalicheemalapalli K.
المصدر: Atmospheric Measurement Techniques Discussions; 2019, p1-50, 50p
مصطلحات موضوعية: CLIMATOLOGY, AEROSOLS, AIR quality monitoring, REFRACTIVE index, CARBONACEOUS aerosols, BIOMASS burning, AIR pollution, RADIOMETERS
مصطلحات جغرافية: PUNE (India)
مستخلص: The AErosol RObotic NETwork (AERONET) is the most developed ground-based network for aerosol remote-sensing and has been playing a significant role not only in monitoring air quality for protecting human health but also in assessing the radiative budget of our planet Earth. In this paper, we report the direct sun and inversion products, comprising of spectral variation of Aerosol Optical Depth (AOD), associated Ångström Exponent (AE), fine- and coarse-mode aerosol fractions, Aerosol Size Distribution (ASD), Refractive Index (RI), Asymmetry Parameter (AP), Single Scattering Albedo (SSA), Aerosol Radiative Forcing (ARF), and columnar concentration of gas constituents such as water vapor, ozone and nitrogen peroxide, obtained from a Cimel sun-sky radiometer, functioning at Pune, India, under the AERONET program since October 2004. These long-term measurements carried out from 2005 to 2015 could serve as an urban aerosol optical long-term average or climatology The AOD long-term variations at all wavelengths, considered in the study, exhibited increasing trend, implying year-to-year enhancement in aerosol loading. The mean seasonal variations in AOD from cloud-free days indicated greater values during monsoon, revealing dominance of hygroscopic aerosol particles over the station. Contribution by different aerosol types to AOD has also been deduced, discussed and found dominance of mixed type of aerosols (43.79 %), followed by combination of biomass burning and urban industrial aerosols (22.03 %) compared to other types of aerosols during the study period. The long-term data sets, derived aerosol and trace gas products play a significant role in understanding aerosol climate forcing, trends, and evaluation of regional air pollution and validation of aerosol transport models over the study region. [ABSTRACT FROM AUTHOR]
Copyright of Atmospheric Measurement Techniques Discussions is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:18678610
DOI:10.5194/amt-2019-437