دورية أكاديمية

Mouse Ovarian Cancer Models Recapitulate the Human Tumor Microenvironment and Patient Response to Treatment.

التفاصيل البيبلوغرافية
العنوان: Mouse Ovarian Cancer Models Recapitulate the Human Tumor Microenvironment and Patient Response to Treatment.
المؤلفون: Maniati, Eleni, Berlato, Chiara, Gopinathan, Ganga, Heath, Owen, Kotantaki, Panoraia, Lakhani, Anissa, McDermott, Jacqueline, Pegrum, Colin, Delaine-Smith, Robin M., Pearce, Oliver M.T., Hirani, Priyanka, Joy, Joash D., Szabova, Ludmila, Perets, Ruth, Sansom, Owen J., Drapkin, Ronny, Bailey, Peter, Balkwill, Frances R.
المصدر: Cell Reports; Jan2020, Vol. 30 Issue 2, p525-525, 1p
مستخلص: Although there are many prospective targets in the tumor microenvironment (TME) of high-grade serous ovarian cancer (HGSOC), pre-clinical testing is challenging, especially as there is limited information on the murine TME. Here, we characterize the TME of six orthotopic, transplantable syngeneic murine HGSOC lines established from genetic models and compare these to patient biopsies. We identify significant correlations between the transcriptome, host cell infiltrates, matrisome, vasculature, and tissue modulus of mouse and human TMEs, with several stromal and malignant targets in common. However, each model shows distinct differences and potential vulnerabilities that enabled us to test predictions about response to chemotherapy and an anti-IL-6 antibody. Using machine learning, the transcriptional profiles of the mouse tumors that differed in chemotherapy response are able to classify chemotherapy-sensitive and -refractory patient tumors. These models provide useful pre-clinical tools and may help identify subgroups of HGSOC patients who are most likely to respond to specific therapies. • Mouse ovarian cancers replicate the human ovarian tumor microenvironment • Stromal, immune, and malignant cell targets in common • Evidence for distinct therapeutic vulnerabilities in individual models • Models may help identify patient subgroups likely to respond to specific therapies Maniati et al. show how orthotopic transplantable mouse ovarian cancers with appropriate genotypes develop microenvironments that replicate many features of human primary ovarian tumors and metastases. Molecular features of the mouse tumors combined with machine learning may allow the identification of patients who are most likely to respond to specific therapies. [ABSTRACT FROM AUTHOR]
Copyright of Cell Reports is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:26391856
DOI:10.1016/j.celrep.2019.12.034