دورية أكاديمية

Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations.

التفاصيل البيبلوغرافية
العنوان: Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations.
المؤلفون: von Hobe, Marc, Ploeger, Felix, Konopka, Paul, Kloss, Corinna, Ulanowski, Alexey, Yushkov, Vladimir, Ravegnani, Fabrizio, Volk, C. Michael, Pan, Laura L., Honomichl, Shawn B., Tilmes, Simone, Kinnison, Douglas E., Garcia, Rolando R., Wright, Jonathon S.
المصدر: Atmospheric Chemistry & Physics Discussions; 9/1/2020, p1-31, 31p
مستخلص: Every year during the Asian summer monsoon season from about mid-June to early September, a stable anticyclonic circulation system forms over the Himalayans. This Asian summer monsoon (ASM) anticyclone has been shown to promote transport of air into the stratosphere from the Asian troposphere, which contains large amounts of anthropogenic pollutants. Essential details of Asian monsoon transport, such as the exact time scales of vertical transport, the role of convection in cross-tropopause exchange, and the main location and level of export from the confined anticyclone to the strato sphere are still not fully resolved. Recent airborne observations from campaigns near the ASM anticyclone edge and centre in 2016 and 2017 respectively show a steady decrease in carbon monoxide (CO) and increase in ozone (O3) with height starting from tropospheric values of 80-100 ppb CO and 30-50 ppb O3 at about 365 K potential temperature. CO mixing ratios reach stratospheric background values of ~20 ppb at about 420 K and do not show a significant vertical gradient at higher levels, while ozone continues to increase throughout the altitude range of the aircraft measurements. Nitrous oxide (N2O) remains at or only marginally below its 2017 tropospheric mixing ratio of 326 ppb up to about 400 K, which is above the local tropopause. A decline in N2O mixing ratios that indicates a significant contribution of stratospheric air is only visible above this level. Based on our observations, we draw the following picture of vertical transport and confinement in the ASM anticyclone: rapid convective uplift transports air to near 16 km in altitude, corresponding to potential temperatures up to about 370 K. Although this main convective outflow layer extends above the level of zero radiative heating (LZRH), our observations of CO concentration show little to no evidence of convection actually penetrating the tropopause. Rather, further ascent occurs more slowly, consistent with isentropic vertical velocities of 0.3 - 0.8 K day-1. For gases not subject to microphysical processes, neither the lapse rate tropopause (LRT) around 380 K nor the cold point tropopause (CPT) around 390 K marks the strong discontinuity of the key tracers (CO, O3, and N2O). Up to about 10 to 20 K above the CPT, isolation of air inside the ASM anticyclone prevents significant in-mixing of stratospheric air. The observed changes in CO and O3 likely result from in-situ chemical processing. Above about 420 K, mixing processes become more significant and the air inside the anticyclone is exported vertically and horizontally into the surrounding stratosphere. [ABSTRACT FROM AUTHOR]
Copyright of Atmospheric Chemistry & Physics Discussions is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:16807367
DOI:10.5194/acp-2020-891