دورية أكاديمية

The Phosphoprotein Synapsin Ia Regulates the Kinetics of Dense-Core Vesicle Release.

التفاصيل البيبلوغرافية
العنوان: The Phosphoprotein Synapsin Ia Regulates the Kinetics of Dense-Core Vesicle Release.
المؤلفون: Hui-Ju Yang, Pin-Chun Chen, Chien-Ting Huang, Tzu-Lin Cheng, Sheng-Ping Hsu, Chien-Yu Chen, Juu-Chin Lu, Chih-Tien Wang
المصدر: Journal of Neuroscience; 3/31/2021, Vol. 41 Issue 13, p2828-2841, 14p
مصطلحات موضوعية: SYNAPTIC vesicles, PHOSPHORYLATION, EXOCYTOSIS, SYNAPTOPHYSIN, IMMUNOPRECIPITATION
مستخلص: Common fusion machinery mediates the Ca21-dependent exocytosis of synaptic vesicles (SVs) and dense-core vesicles (DCVs). Previously, Synapsin Ia (Syn Ia) was found to localize to SVs, essential for mobilizing SVs to the plasma membrane through phosphorylation. However, whether (or how) the phosphoprotein Syn Ia plays a role in regulating DCV exocytosis remains unknown. To answer these questions, we measured the dynamics of DCV exocytosis by using single-vesicle amperometry in PC12 cells (derived from the pheochromocytoma of rats of unknown sex) overexpressing wild-type or phosphodeficient Syn Ia. We found that overexpression of phosphodeficient Syn Ia decreased the DCV secretion rate, specifically via residues previously shown to undergo calmodulin-dependent kinase (CaMK)-mediated phosphorylation (S9, S566, and S603). Moreover, the fusion pore kinetics during DCV exocytosis were found to be differentially regulated by Syn Ia and two phosphodeficient Syn Ia mutants (Syn Ia-S62A and Syn Ia-S9,566,603A). Kinetic analysis suggested that Syn Ia may regulate the closure and dilation of DCV fusion pores via these sites, implying the potential interactions of Syn Ia with certain DCV proteins involved in the regulation of fusion pore dynamics. Furthermore, we predicted the interaction of Syn Ia with several DCV proteins, including Synaptophysin (Syp) and soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins. By immunoprecipitation, we found that Syn Ia interacted with Syp via phosphorylation. Moreover, a proximity ligation assay (PLA) confirmed their phosphorylation-dependent, in situ interaction on DCVs. Together, these findings reveal a phosphorylation-mediated regulation of DCV exocytosis by Syn Ia. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Neuroscience is the property of Society for Neuroscience and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:02706474
DOI:10.1523/JNEUROSCI.2593-19.2021