دورية أكاديمية

Comparison and validation of neural network models to estimate LED spectral power distribution.

التفاصيل البيبلوغرافية
العنوان: Comparison and validation of neural network models to estimate LED spectral power distribution.
المؤلفون: Lokesh, J, Padmasali, AN, Mahesha, MG, Kini, SG
المصدر: Lighting Research & Technology; May2023, Vol. 55 Issue 3, p281-299, 19p
مصطلحات موضوعية: ARTIFICIAL neural networks, STATISTICAL models, THERMAL stresses, LIGHT sources, ELECTRICAL load, HUMAN fingerprints
مستخلص: The spectral power distribution (SPD) is the true fingerprint of a light source and is mainly dependent on electrical and thermal loading. Both the photometric and colorimetric quantities are originally extracted from SPD. Therefore, the dynamic prediction of SPD for LED has become an important aspect to evaluate the performance of LED during its time of operation. Generally, the statistical models are used to predict SPD. However, the statistical model with more than two input makes the system complex and time demanding. Artificial Neural Network (ANN) models, on the other hand, can help with this problem. The major goal of this research is to improve the utility of ANN in lighting applications. This is demonstrated by various neural network (NN) structures referred as models 1, 2 and 3 with combinations of varied neurons and hidden layers (HLs) to forecast SPD for various electrical and thermal stress levels at zero hours. The results are compared and based on absolute prediction error (APE) set to 5%, model 1 is considered as the best model for the SPD prediction. In addition, the time-based SPD prediction with model 1 is investigated using temperature, wavelength and time as input parameters for the LED luminaire and is validated. [ABSTRACT FROM AUTHOR]
Copyright of Lighting Research & Technology is the property of Sage Publications, Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:14771535
DOI:10.1177/14771535221142804