دورية أكاديمية

Chitosan-Based Nanoencapsulation of Ocimum americanum Essential Oil as Safe Green Preservative Against Fungi Infesting Stored Millets, Aflatoxin B1 Contamination, and Lipid Peroxidation.

التفاصيل البيبلوغرافية
العنوان: Chitosan-Based Nanoencapsulation of Ocimum americanum Essential Oil as Safe Green Preservative Against Fungi Infesting Stored Millets, Aflatoxin B1 Contamination, and Lipid Peroxidation.
المؤلفون: Singh, Bijendra Kumar, Tiwari, Shikha, Maurya, Akash, Das, Somenath, Singh, Vipin Kumar, Dubey, Nawal Kishore
المصدر: Food & Bioprocess Technology; Aug2023, Vol. 16 Issue 8, p1851-1872, 22p
مصطلحات موضوعية: ESSENTIAL oils, MILLETS, BASIL, FOXTAIL millet, AFLATOXINS, LIPIDS
مستخلص: Present study deals with the first-time report on encapsulation of Ocimum americanum essential oil (OAEO) into chitosan matrix with enhanced antifungal, aflatoxin B1 (AFB1) inhibition, antioxidant activity, and in situ efficacy in the millet food system. GC–MS analysis suggested citral (66.72%) as the major component of OAEO. Physicochemical characterizations through SEM, FTIR, and XRD analyses confirmed the successful loading of OAEO into chitosan nanoemulsion (OAEO-CsNe). In vitro release profile of nanoencapsulated OAEO exhibited biphasic burst and controlled volatilisation, a prerequisite for long-term antifungal effect in the stored food system. OAEO-CsNe completely inhibited the growth and AFB1 production of Aspergillus flavus at 0.2 and 0.175 μL/mL, respectively. Inhibition of ergosterol biosynthesis followed by the release of vital cellular ions, and 260, 280 nm absorbing materials from AFLHPSi-1 cells suggested plasma membrane as a potential site of antifungal action of OAEO-CsNe. Significant reduction of cellular methylglyoxal (an AFB1 inducer) level in AFLHPSi-1 cells after fumigation with OAEO-CsNe confirmed the novel biochemical mechanism of anti-aflatoxigenic activity. Additionally, in silico modelling of citral (major component of OAEO) with Ver-1 and Omt-A proteins suggested the hydrogen bond-dependent molecular interaction for inhibition of AFB1 biosynthesis. OAEO-CsNe showed significant in situ antifungal, anti-aflatoxigenic, and lipid peroxidation-suppressing potentialities without altering the organoleptic and germination properties of Setaria italica seeds. Moreover, the appreciative safety profile (LD50 = 11,162.06 μL/kg) of OAEO-CsNe in a mammalian model system (Mus musculus) strengthens its recommendation as an effective green preservative against fungal infestation, AFB1 contamination, and reactive oxygen species-mediated lipid peroxidation in stored food commodities. [ABSTRACT FROM AUTHOR]
Copyright of Food & Bioprocess Technology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:19355130
DOI:10.1007/s11947-023-03008-1