دورية أكاديمية

Designing an enzyme assembly line for green cascade processes using bio-orthogonal chemistry.

التفاصيل البيبلوغرافية
العنوان: Designing an enzyme assembly line for green cascade processes using bio-orthogonal chemistry.
المؤلفون: Li Qiao, Zhiyuan Luo, Ru Wang, Xiaolin Pei, Shujiao Wu, Haomin Chen, Tian Xie, Sheldon, Roger A., Anming Wang
المصدر: Green Chemistry; 10/7/2023, Vol. 25 Issue 19, p7547-7555, 9p
مصطلحات موضوعية: ASSEMBLY line methods, ALCOHOL dehydrogenase, ENZYMES, ASYMMETRIC synthesis, ESCHERICHIA coli, ENZYME kinetics, GLUTARALDEHYDE, POLYMERIZATION
مستخلص: Two non-canonical amino acids (ncAAs) with bio-orthogonal reactive groups, namely, p-azido-L-phenylalanine (p-AzF) and p-propargyloxy-L-phenylalanine (p-PaF), were genetically inserted into an aldo-keto reductase (AKR) and an alcohol dehydrogenase (ADH), respectively, at two preselected sites for each enzyme. The variants were expressed in the genome recoded bacterium Escherichia coli C321.ΔA. Supernatants of the individual cell lysates were subsequently mixed to produce orderly combi-crosslinked enzymes (O-CLEs) of AKR and ADH by co-polymerization of the two variants through their reactive bioorthogonal groups. The site-specific cross-linked enzymes (S-CLEs) and cross-linked enzyme aggregates (CLEAs) were produced using dibenzocycloocta-4a,6a-diene-5,11-diyne (DBA) and glutaraldehyde as the crosslinking agent, respectively. The catalytic efficiencies of the O-CLEs, S-CLEs and combi-CLEAs were determined using the water soluble dihydro-4, 4-dimethyl-2, 3-furandione as a surrogate substrate in aqueous solution at 37 °C. The O-CLEs exhibited the highest catalytic efficiency (Kcat/KM = 11.36 S-1 mM-1) that was 4.24 and 22.27 times that of S-CLEs and combi-CLEAs, respectively. In the asymmetric cascade synthesis of (R)-1-(2-chlorophenyl) ethanol the product yield after 14 h using the O-CLEs, S-CLEs and the combi-CLEAs was 93%, 55% and 16%, respectively. Moreover, high activities and selectivity (ee > 99.99%) were maintained at high substrate concentrations in prolonged operation. [ABSTRACT FROM AUTHOR]
Copyright of Green Chemistry is the property of Royal Society of Chemistry and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:14639262
DOI:10.1039/d3gc01898a