دورية أكاديمية

Quantum bath augmented stochastic nonequilibrium atomistic simulations for molecular heat conduction.

التفاصيل البيبلوغرافية
العنوان: Quantum bath augmented stochastic nonequilibrium atomistic simulations for molecular heat conduction.
المؤلفون: Chen, Renai, Dinpajooh, Mohammadhasan, Nitzan, Abraham
المصدر: Journal of Chemical Physics; 10/7/2023, Vol. 159 Issue 13, p1-11, 11p
مصطلحات موضوعية: HEAT conduction, BOSE-Einstein statistics, QUANTUM statistics, LANGEVIN equations, MOLECULAR dynamics
مستخلص: Classical molecular dynamics (MD) has been shown to be effective in simulating heat conduction in certain molecular junctions since it inherently takes into account some essential methodological components which are lacking in the quantum Landauer-type transport model, such as many-body full force-field interactions, anharmonicity effects and nonlinear responses for large temperature biases. However, the classical MD reaches its limit in the environments where the quantum effects are significant (e.g. with low-temperatures substrates, presence of extremely high frequency molecular modes). Here, we present an atomistic simulation methodology for molecular heat conduction that incorporates the quantum Bose–Einstein statistics into an "effective temperature" in the form of a modified Langevin equation. We show that the results from such a quasi-classical effective temperature MD method deviates drastically when the baths temperature approaches zero from classical MD simulations and the results converge to the classical ones when the bath approaches the high-temperature limit, which makes the method suitable for full temperature range. In addition, we show that our quasi-classical thermal transport method can be used to model the conducting substrate layout and molecular composition (e.g. anharmonicities, high-frequency modes). Anharmonic models are explicitly simulated via the Morse potential and compared to pure harmonic interactions to show the effects of anharmonicities under quantum colored bath setups. Finally, the chain length dependence of heat conduction is examined for one-dimensional polymer chains placed in between quantum augmented baths. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Chemical Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00219606
DOI:10.1063/5.0168117