دورية أكاديمية

A Layered Hybrid Oxide–Sulfide All-Solid-State Battery with Lithium Metal Anode.

التفاصيل البيبلوغرافية
العنوان: A Layered Hybrid Oxide–Sulfide All-Solid-State Battery with Lithium Metal Anode.
المؤلفون: Hüttl, Juliane, Zapp, Nicolas, Tanikawa, Saoto, Nikolowski, Kristian, Michaelis, Alexander, Auer, Henry
المصدر: Batteries; Oct2023, Vol. 9 Issue 10, p507, 14p
مصطلحات موضوعية: LITHIUM cells, GARNET, POLYELECTROLYTES, LITHIUM, IONIC conductivity, ANODES, SOLID electrolytes, METALS
مستخلص: Different classes of solid electrolytes for all-solid-state batteries (ASSB) are currently being investigated, with each of them suitable for a different ASSB concept. Their combination in hybrid battery cells enables the use of their individual benefits while mitigating their disadvantages. The cubic stuffed garnet Li7La3Zr2O12 (LLZO), for example, is stable in contact with metallic lithium but has only moderate ionic conductivity, whereas the thiophosphate Li10SnP2S12 (LSPS) is processable using conventional battery manufacturing technologies and has an excellent lithium-ion conductivity but an inferior electrochemical stability. In this work, we, therefore, present a layered hybrid all-solid-state full-cell concept that accommodates a lithium metal anode, a LiNi0.8Co0.1Mn0.1O2-based composite cathode with an LSPS catholyte (LSPS/NCM811) and a sintered monolithic LLZO separator. The electrochemical stability of LLZO and LSPS at cathodic potentials (up to 4.2 V) was investigated via cyclic voltammetry in test cells, as well as by cycling half cells with LSPS or a mixed LSPS/LLZO catholyte. Furthermore, the pressure-dependency of the galvanostatic cycling of a Li | LLZO | LSPS/NCM811 full cell was investigated, as well as the according effect of the Li | LLZO interface in symmetric test cells. An operation pressure of 12.5 MPa was identified as the optimal value, which assures both sufficient inter-layer contact and impeded lithium penetration through the separator and cell short-circuiting. [ABSTRACT FROM AUTHOR]
Copyright of Batteries is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:23130105
DOI:10.3390/batteries9100507