دورية أكاديمية

Forsythia suspensa (Thunb.) Vahl extract ameliorates ulcerative colitis via inhibiting NLRP3 inflammasome activation through the TLR4/MyD88/NF‐κB pathway.

التفاصيل البيبلوغرافية
العنوان: Forsythia suspensa (Thunb.) Vahl extract ameliorates ulcerative colitis via inhibiting NLRP3 inflammasome activation through the TLR4/MyD88/NF‐κB pathway.
المؤلفون: Tong, Xiao, Chen, Li, He, Shijun, Liu, Shuangshuang, Yao, Jiaying, Shao, Zhenguang, Ye, Yang, Yao, Sheng, Lin, Zemin, Zuo, Jianping
المصدر: Immunity, Inflammation & Disease; Nov2023, Vol. 11 Issue 11, p1-14, 14p
مصطلحات موضوعية: ULCERATIVE colitis, NLRP3 protein, INFLAMMASOMES, LARGE intestine, ENZYME-linked immunosorbent assay
مستخلص: Background: Ulcerative colitis (UC), a chronic inflammatory disease, is caused by abnormal immune system reactions resulting in inflammation and ulcers in the large intestine. Phillygenin (PHI) is a natural compound found in Forsythia suspensa (Thunb.) Vahl, which is known for its antipyretic, anti‐inflammatory, antiobesity, and other biological activities. However, the therapeutic role and molecular mechanisms of PHI on UC are still insufficiently researched. Methods: In this study, dextran sulfate sodium (DSS) and 2.5% 2,4,6‐trinitro‐Benzenesulfonic acid (TNBS)‐induced acute UC were used to investigate the therapeutic effects of PHI. We evaluated the effects of PHI on disease activity index (DAI), body weight, mortality, intestinal mucosal barrier, cytokine secretion, and macrophage infiltration into colon tissue using various techniques such as flow cytometry, immunofluorescence, enzyme‐linked immunosorbent assay (ELISA), RT‐qPCR, and Western blot analysis. Results: Our findings revealed that PHI has therapeutic properties in UC treatment. PHI was able to maintain body weight, reduce DAI and mortality, restore the intestinal mucosal barrier, and inhibit cytokine secretion. Flow cytometry assay and immunofluorescence indicated that PHI reduces macrophage infiltration into colon tissue. Mechanistically, PHI may exert anti‐inflammatory effects by downregulating the TLR4/MyD88/NF‐κB pathway and inhibiting the activation of NLRP3 inflammasome. Conclusion: In conclusion, PHI possesses significant anti‐inflammatory properties and is expected to be a potential drug for UC treatment. Our study delves into the underlying mechanisms of PHI therapy and highlights the potential for further research in developing PHI‐based treatments for UC. [ABSTRACT FROM AUTHOR]
Copyright of Immunity, Inflammation & Disease is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:20504527
DOI:10.1002/iid3.1069