دورية أكاديمية

Human Mesenchymal Stem Cell Transplantation Improved Functional Outcomes Following Spinal Cord Injury Concomitantly with Neuroblast Regeneration.

التفاصيل البيبلوغرافية
العنوان: Human Mesenchymal Stem Cell Transplantation Improved Functional Outcomes Following Spinal Cord Injury Concomitantly with Neuroblast Regeneration.
المؤلفون: Ataei, Maryam Lale, Karimipour, Mohammad, Shahabi, Parviz, Soltani-Zangbar, Hamid, Pashaiasl, Maryam
المصدر: Advanced Pharmaceutical Bulletin; 2023, Vol. 13 Issue 4, p806-816, 11p
مصطلحات موضوعية: MESENCHYMAL stem cells, HUMAN stem cells, STEM cell transplantation, SPINAL cord injuries, AMNIOTIC liquid, GLIAL fibrillary acidic protein, ASTROCYTES, AXONS
مستخلص: Purpose: Spinal cord injury (SCI) is damage to the spinal cord that resulted in irreversible neuronal loss, glial scar formation and axonal injury. Herein, we used the human amniotic fluid mesenchymal stem cells (hAF-MSCs) and their conditioned medium (CM), to investigate their ability in neuroblast and astrocyte production as well as functional recovery following SCI. Methods: Fifty-four adult rats were randomly divided into nine groups (n = 6), included: Control, SCI, (SCI + DMEM), (SCI + CM), (SCI + MSCs), (SCI + Astrocyte), (SCI + Astrocyte + DMEM), (SCI + Astrocyte + CM) and (SCI + Astrocyte + MSCs). Following laminectomy and SCI induction, DMEM, CM, MSCs, and astrocytes were injected. Western blot was performed to explore the levels of the Sox2 protein in the MSCs-CM. The immunofluorescence staining against doublecortin (DCX) and glial fibrillary acidic protein (GFAP) was done. Finally, Basso-Beattie- Brenham (BBB) locomotor test was conducted to assess the neurological outcomes. Results: Our results showed that the MSCs increased the number of endogenous DCX-positive cells and decreased the number of GFAP-positive cells by mediating juxtacrine and paracrine mechanisms (P < 0.001). Transplanted human astrocytes were converted to neuroblasts rather than astrocytes under influence of MSCs and CM in the SCI. Moreover, functional recovery indexes were promoted in those groups that received MSCs and CM. Conclusion: Taken together, our data indicate the MSCs via juxtacrine and paracrine pathways could direct the spinal cord endogenous neural stem cells (NSCs) to the neuroblasts lineage which indicates the capability of the MSCs in the increasing of the number of DCX-positive cells and astrocytes decline. [ABSTRACT FROM AUTHOR]
Copyright of Advanced Pharmaceutical Bulletin is the property of Tabriz University of Medical Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:22285881
DOI:10.34172/apb.2023.058