دورية أكاديمية

The causal effects between gut microbiota and hemorrhagic stroke: a bidirectional two-sample Mendelian randomization study.

التفاصيل البيبلوغرافية
العنوان: The causal effects between gut microbiota and hemorrhagic stroke: a bidirectional two-sample Mendelian randomization study.
المؤلفون: Yingjie Shen, Hao Liu, Xiangyi Meng, Aili Gao, Yansong Liu, Wei Ma, Hongsheng Liang, Fulan Hu
المصدر: Frontiers in Microbiology; 2024, p1-17, 17p
مصطلحات موضوعية: HEMORRHAGIC stroke, GUT microbiome, INTRACRANIAL hemorrhage, INSTRUMENTAL variables (Statistics), RANDOMIZATION (Statistics), DISEASE risk factors, CEREBRAL hemorrhage, VENOM
مستخلص: Background: Recent studies have suggested that the composition of gut microbiota (GM) may change after intracerebral hemorrhage. However, the causal inference of GM and hemorrhagic stroke is unknown. Mendelian Randomization (MR) is an effective research method that removes confounding factors and investigates the causal relationship between exposure and outcome. This study intends to explore the causal relationship between GM and hemorrhagic stroke with the help of MR. Methods: Univariable and multivariable MR analyses were performed using summary statistics of the GM (n = 18,340) in the MiBioGen consortium vs. the FinnGen consortium R9 summary statistics (intracerebral hemorrhage, subarachnoid hemorrhage, and nontraumatic intracranial hemorrhage). Causal associations between gut microbiota and hemorrhagic stroke were analyzed using inverse variance weighted, MR-Egger regression, weighted median, weighted mode, simple mode, and MR-PRESSO. Cochran's Q statistic, MREgger regression, and leave-one-out analysis were used to test for multiplicity and heterogeneity of instrumental variables. Separate reverse MR analyses were performed for microbiota found to be causally associated with hemorrhagic stroke in the forward MR analysis. Also, multivariate MR analyses were conducted after incorporating common confounders. Results: Based on the results of univariable and multivariate MR analyses, Actinobacteria (phylum) (OR, 0.80; 95%CI, 0.66-0.97; p = 0.025) had a protective effect against hemorrhagic stroke, while Rikenellaceae RC9 gut group (genus) (OR, 0.81; 95%CI, 0.67-0.99; p = 0.039) had a potential protective effect. Furthermore, Dorea (genus) (OR, 1.77; 95%CI, 1.27-2.46; p = 0.001), Eisenbergiella (genus) (OR, 1.24; 95%CI, 1.05-1.48; p = 0.013) and Lachnospiraceae UCG008 (genus) (OR, 1.28; 95%CI, 1.01-1.62; p = 0.041) acted as potential risk factors for hemorrhagic stroke. The abundance of Dorea (genus) (β, 0.05; 95%CI, 0.002~ 0.101; p = 0.041) may increase, and that of Eisenbergiella (genus) (β, -0.072; 95%CI, -0.137~ -0.007; p = 0.030) decreased after hemorrhagic stroke according to the results of reverse MR analysis. No significant pleiotropy or heterogeneity was detected in any of the MR analyses. Conclusion: There is a significant causal relationship between GM and hemorrhagic stroke. The prevention, monitoring, and treatment of hemorrhagic stroke through GM represent a promising avenue and contribute to a deeper understanding of the mechanisms underlying hemorrhagic stroke. [ABSTRACT FROM AUTHOR]
Copyright of Frontiers in Microbiology is the property of Frontiers Media S.A. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:1664302X
DOI:10.3389/fmicb.2023.1290909