دورية أكاديمية

An unsteady instigated induced magnetic field's influence on the axisymmetric stagnation point flow of various shaped copper and silver nanomaterials submerged in ethylene glycol over an unsteady radial stretching sheet.

التفاصيل البيبلوغرافية
العنوان: An unsteady instigated induced magnetic field's influence on the axisymmetric stagnation point flow of various shaped copper and silver nanomaterials submerged in ethylene glycol over an unsteady radial stretching sheet.
المؤلفون: Shaiq, Shakil, Maraj, Ehnber Naheed, Shahzad, Azeem
المصدر: Numerical Heat Transfer: Part A -- Applications; 2024, Vol. 85 Issue 6, p822-844, 23p
مصطلحات موضوعية: STAGNATION point, STAGNATION flow, ETHYLENE glycol, MAGNETIC fields, COPPER, HEAT transfer
مستخلص: The axisymmetric stagnation point flow of brick and blade-shaped Silver and Copper nanoparticles immersed in an ethylene glycol base fluid under the influence of an induced magnetic field over an unsteady radial stretching surface is investigated in this study. The unsteady phenomenon is considered because most flow issues in practice are unsteady. The fundamental laws of mass, momentum, and energy conservation are used to present the physical model. Heat transmission is also examined under the effects of magnetohydrodynamics, Joule heating, viscous dissipation, and convective boundary conditions to give a realistic physical investigation. Scaling analysis transforms the flow-governing issue into a collection of higher-order nonlinear ODEs. These are, then, solved numerically using the fourth-order Runge–Kutta and shooting techniques. Moreover, the numerical technique is validated by calculating residual error. It is concluded that, compared to the Ag–EG nanofluid, the Cu–EG nanofluid had the highest IMF, lowest temperature, minimum surface drag, and maximum heat flux, making it the ideal choice for creating a radial module. [ABSTRACT FROM AUTHOR]
Copyright of Numerical Heat Transfer: Part A -- Applications is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:10407782
DOI:10.1080/10407782.2023.2193351