دورية أكاديمية

Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban region aloft: insights from tower-based online gradient measurements.

التفاصيل البيبلوغرافية
العنوان: Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban region aloft: insights from tower-based online gradient measurements.
المؤلفون: Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, Min Shao
المصدر: Atmospheric Chemistry & Physics Discussions; 1/25/2024, p1-44, 44p
مستخلص: Formic acid is the most abundant organic acid in the troposphere and has significant environmental and climatic impacts. Isocyanic acid poses severe threats to human health and could be formed through the degradation of formic acid. However, the lack of vertical observation information has strongly limited the understanding of their sources, particularly in urban regions with complex pollutant emissions. To address this issue, continuous (27 days) vertical gradient measurements (five heights between 5-320 m) of formic and isocyanic acids were made based on a tall tower in Beijing, China in summer of 2021. Results show that the respective mean mixing ratios of formic and isocyanic acids were 1.3±1.3 ppbv and 0.28±0.16 ppbv at 5 m and were 2.1±1.9 ppbv and 0.43±0.21 ppbv at 320 m during the campaign. The mixing ratios of formic and isocyanic acids were substantially enhanced in daytime and correlated with the diurnal change of ozone. Upon sunrise, the mixing ratios of formic and isocyanic acids at different heights simultaneously increased even in the residual layer. In addition, positive vertical gradients were observed for formic and isocyanic acids throughout the day. The afternoon peaks and positive vertical gradients of formic and isocyanic acids in nighttime indicate their dominant contributions from photochemical formations. Furthermore, the positive vertical gradients of formic and isocyanic acids in daytime imply the enhancement of their secondary formation in urban regions aloft, predominantly due to the enhancements of oxygenated volatile organic compounds. The formation pathway of isocyanic acid through HCOOH-CH3NO-HNCO was enhanced with height but only accounted for a tiny fraction of its ambient abundance. The abundance and source contributions of formic and isocyanic acids in the atmospheric boundary layer may be highly underestimated when being derived from their ground-level measurements. With the aid of numerical modeling techniques, future studies could further identify key precursors that drive the rapid formation of formic and isocyanic acids, and quantitatively assess the impacts of the enhanced formation of the two acids aloft on their budgets at ground level. [ABSTRACT FROM AUTHOR]
Copyright of Atmospheric Chemistry & Physics Discussions is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:16807367
DOI:10.5194/egusphere-2024-13