دورية أكاديمية

Improved synthesis of 6-bromo-7-[11C]methylpurine for clinical use.

التفاصيل البيبلوغرافية
العنوان: Improved synthesis of 6-bromo-7-[11C]methylpurine for clinical use.
المؤلفون: Okamura, Toshimitsu, Kikuchi, Tatsuya, Ogawa, Masanao, Zhang, Ming-Rong
المصدر: EJNMMI Radiopharmacy & Chemistry; 2/9/2024, Vol. 9, p1-12, 12p
مصطلحات موضوعية: MULTIDRUG resistance-associated proteins, METHYL triflate, POLAR solvents, ETHYL acetate, POTASSIUM carbonate, ACETONITRILE
مستخلص: Background: Multidrug resistance-associated protein 1 (MRP1), an energy-dependent efflux pump, is expressed widely in various tissues and contributes to many physiological and pathophysiological processes. 6-Bromo-7-[11C]methylpurine ([11C]7m6BP) is expected to be useful for the assessment of MRP1 activity in the human brain and lungs. However, the radiochemical yield (RCY) in the synthesis of [11C]7m6BP was low, limiting its clinical application, because the methylation of the precursor with [11C]CH3I provided primarily the undesired isomer, 6-bromo-9-[11C]methylpurine ([11C]9m6BP). To increase the RCY of [11C]7m6BP, we investigated conditions for improving the [11C]7m6BP/[11C]9m6BP selectivity of the methylation reaction. Results: [11C]7m6BP was manually synthesized via the methylation of 6-bromopurine with [11C]CH3I in various solvents and at different temperatures in the presence of potassium carbonate for 5 min. Several less polar solvents, including tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), and ethyl acetate (AcOEt) improved the [11C]7m6BP/[11C]9m6BP selectivity from 1:1 to 2:1, compared with the conventionally used solvents for the alkylation of 6-halopurines, acetone, acetonitrile, and N,N-dimethylformamide. However, a higher temperature (140 °C or 180 °C) was needed to progress the 11C-methylation in the less polar solvents, and the manual conditions could not be directly translated to an automated synthesis. [11C]Methyl triflate ([11C]CH3OTf) was thus used as a methylating agent to increase the conversion at a lower temperature. The 11C-methylation using [11C]CH3OTf at 100 °C proceeded efficiently in THF, 2-MeTHF, and AcOEt with maintenance of the improved selectivity. Starting from 28 to 34 GBq [11C]CO2, [11C]7m6BP was produced with 2.3–2.6 GBq for THF, 2.7–3.3 GBq for AcOEt, and 2.8–3.9 GBq for 2-MeTHF at approximately 30 min after the end of bombardment (n = 3 per solvent). The isolated RCYs (decay corrected) for THF, 2-MeTHF, and AcOEt were 24–28%, 29–35%, and 22–31% (n = 3), respectively. Conclusions: The use of THF, 2-MeTHF, and AcOEt improved the [11C]7m6BP/[11C]9m6BP selectivity in the methylation reaction, and the improved method provided [11C]7m6BP with sufficient radioactivity for clinical use. [ABSTRACT FROM AUTHOR]
Copyright of EJNMMI Radiopharmacy & Chemistry is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:2365421X
DOI:10.1186/s41181-024-00240-8