دورية أكاديمية

Identification of Phytochemicals from Arabian Peninsula Medicinal Plants as Strong Binders to SARS-CoV-2 Proteases (3CL Pro and PL Pro) by Molecular Docking and Dynamic Simulation Studies.

التفاصيل البيبلوغرافية
العنوان: Identification of Phytochemicals from Arabian Peninsula Medicinal Plants as Strong Binders to SARS-CoV-2 Proteases (3CL Pro and PL Pro) by Molecular Docking and Dynamic Simulation Studies.
المؤلفون: Saquib, Quaiser, Bakheit, Ahmed H., Ahmed, Sarfaraz, Ansari, Sabiha M., Al-Salem, Abdullah M., Al-Khedhairy, Abdulaziz A.
المصدر: Molecules; Mar2024, Vol. 29 Issue 5, p998, 29p
مصطلحات موضوعية: DYNAMIC simulation, MOLECULAR docking, MEDICINAL plants, SARS-CoV-2, STANDARD deviations
مصطلحات جغرافية: ARABIAN Peninsula
مستخلص: We provide promising computational (in silico) data on phytochemicals (compounds 1–10) from Arabian Peninsula medicinal plants as strong binders, targeting 3-chymotrypsin-like protease (3CLPro) and papain-like proteases (PLPro) of SARS-CoV-2. Compounds 1–10 followed the Lipinski rules of five (RO5) and ADMET analysis, exhibiting drug-like characters. Non-covalent (reversible) docking of compounds 1–10 demonstrated their binding with the catalytic dyad (CYS145 and HIS41) of 3CLPro and catalytic triad (CYS111, HIS272, and ASP286) of PLPro. Moreover, the implementation of the covalent (irreversible) docking protocol revealed that only compounds 7, 8, and 9 possess covalent warheads, which allowed the formation of the covalent bond with the catalytic dyad (CYS145) in 3CLPro and the catalytic triad (CYS111) in PLPro. Root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), and radius of gyration (Rg) analysis from molecular dynamic (MD) simulations revealed that complexation between ligands (compounds 7, 8, and 9) and 3CLPro and PLPro was stable, and there was less deviation of ligands. Overall, the in silico data on the inherent properties of the above phytochemicals unravel the fact that they can act as reversible inhibitors for 3CLPro and PLPro. Moreover, compounds 7, 8, and 9 also showed their novel properties to inhibit dual targets by irreversible inhibition, indicating their effectiveness for possibly developing future drugs against SARS-CoV-2. Nonetheless, to confirm the theoretical findings here, the effectiveness of the above compounds as inhibitors of 3CLPro and PLPro warrants future investigations using suitable in vitro and in vivo tests. [ABSTRACT FROM AUTHOR]
Copyright of Molecules is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:14203049
DOI:10.3390/molecules29050998