دورية أكاديمية

Investigation of air bubble behaviour after gas embolism events induced in a microfluidic network mimicking microvasculature.

التفاصيل البيبلوغرافية
العنوان: Investigation of air bubble behaviour after gas embolism events induced in a microfluidic network mimicking microvasculature.
المؤلفون: Mardanpour, Mohammad Mahdi, Perumal, Ayyappasamy Sudalaiyadum, Mahmoodi, Zahra, Baassiri, Karine, Montiel-Rubies, Gala, LeDez, Kenneth M., Nicolau, Dan V.
المصدر: Lab on a Chip; 5/7/2024, Vol. 24 Issue 9, p2518-2536, 19p
مصطلحات موضوعية: GAS embolism, BUBBLES, AIR resistance, BLOOD substitutes, VISCOSITY, MICROFLUIDIC devices
مستخلص: Gas embolism is a medical condition that occurs when gas bubbles are present in veins or arteries, decreasing blood flow and potentially reducing oxygen delivery to vital organs, such as the brain. Although usually reported as rare, gas embolism can lead to severe neurological damage or death. However, presently, only limited understanding exists regarding the microscale processes leading to the formation, persistence, movement, and resolution of gas emboli, as modulated by microvasculature geometrical features and blood properties. Because gas embolism is initially a physico-chemical-only process, with biological responses starting later, the opportunity exists to fully study the genesis and evolution of gas emboli using in vitro microfluidic networks mimicking small regions of microvasculature. The microfluidics networks used in this study, which aim to mimic microvasculature geometry, comprise linear channels with T-, or Y-junction air inlets, with 20, 40, and 60 μm widths (arterial or venous), and a 30 μm width honeycombed network (arterial) with three bifurcation angles (30°, 60°, and 90°). Synthetic blood, equivalent to 46% haematocrit concentrations, and water were used to study the modulation of gas embolism-like events by liquid viscosity. Our study shows that (i) longer bubbles with lower velocity occur in narrower channels, e.g., with 20 μm width; (ii) the resistance of air bubbles to the flow increases with the higher haematocrit concentration; and lastly (iii) the propensity of gas embolism-like events in honeycomb architectures increases for more acute, e.g., 30°, bifurcation angles. A dimensionless analysis using Euler, Weber, and capillary numbers demarcated the conditions conducive to gas embolism. This work suggests that in vitro experimentation using microfluidic devices with microvascular tissue-like structures could assist medical guidelines and management in preventing and mitigating the effects of gas embolism. [ABSTRACT FROM AUTHOR]
Copyright of Lab on a Chip is the property of Royal Society of Chemistry and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:14730197
DOI:10.1039/d4lc00087k