دورية أكاديمية

Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions.

التفاصيل البيبلوغرافية
العنوان: Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions.
المؤلفون: Brean, James, Beddows, David C. S., Asmi, Eija, Virkkula, Aki, Quéléver, Lauriane L. J., Sipilä, Mikko, Van Den Heuvel, Floortje, Lachlan-Cope, Thomas, Jones, Anna E., Frey, Markus, Lupi, Angelo, Park, Jiyeon, Young Jun Yoon, Weller, Rolf, Marincovich, Giselle L., Mulena, Gabriela C., Harrison, Roy M., Dall'Osto, Manuel
المصدر: Atmospheric Chemistry & Physics Discussions; 5/6/2024, p1-44, 44p
مستخلص: In order to reduce the uncertainty of aerosol radiative forcing in global climate models, we need to better understand natural aerosol sources which are important to constrain the current and pre-industrial climate. Here, we analyze Particle Number Size Distributions (PNSD) collected during a year (2015) across four coastal and inland Antarctic research bases (Halley, Marambio, Concordia/Dome C and King Sejong). We find that the four Antarctic locations have striking differences in PNSD, stressing multiple aerosol sources and processes likely exist. We utilise k-means cluster analysis to separate the PNSD data into six main categories. Nucleation and Bursting PNSDs occur 28-48% of the time between sites, most commonly at coastal sites Marambio and King Sejong where air masses mostly come from the west and travel over extensive regions of sea ice, marginal ice, and open ocean, and likely arise from new particle formation. Aitken high, Aitken low, and bimodal PNSDs occur 37-68% of the time, most commonly at Concordia/Dome C on the Antarctic Plateau, and likely arise from atmospheric transport and aging from aerosol originating likely in both coastal boundary layer and free troposphere. Pristine PNSDs with low aerosol concentrations occur 12-45% of the time, most common at Halley located at low altitudes and far from the coastal melting ice, and influenced by air masses from the west. The Antarctic Atmospheric circulation has a strong control on the air mass origin type. Most of the time Marambio and King Sejong stations are affected by Easterly air masses, whereas Halley gets air masses mainly from the Weddell sea marginal and consolidated pack ice. Not only the sea spray primary aerosols and gas to particle secondary aerosols sources, but also the different air masses impacting the research stations should be kept in mind when deliberating upon different aerosol precursors sources across research stations. We provide evidence that both primary and secondary components from pelagic and sympagic regions strongly contribute to the annual seasonal cycle of Antarctic aerosols which add insight on the possible sources of aerosol production/activity in the whole Antarctic region. Our simultaneous aerosol measurements stress the importance of the variation in atmospheric biogeochemistry across the Antarctic region. [ABSTRACT FROM AUTHOR]
Copyright of Atmospheric Chemistry & Physics Discussions is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:16807367
DOI:10.5194/egusphere-2024-987