دورية أكاديمية

Resolving the Loss of Intermediate-Size Speech Aerosols in Funnel-Guided Particle Counting Measurements.

التفاصيل البيبلوغرافية
العنوان: Resolving the Loss of Intermediate-Size Speech Aerosols in Funnel-Guided Particle Counting Measurements.
المؤلفون: Kakeshpour, Tayeb, Bax, Adriaan
المصدر: Atmosphere; May2024, Vol. 15 Issue 5, p570, 17p
مصطلحات موضوعية: AEROSOLS, SUPERSPREADING events, AIRBORNE infection, TROPOSPHERIC aerosols, RADIOACTIVE aerosols, VIRAL load, MICROBIOLOGICAL aerosols, RESEARCH personnel
مستخلص: Modeling of airborne virus transmission and protection against it requires knowledge of the amount of biofluid emitted into the atmosphere and its viral load. Whereas viral concentrations in biofluids are readily measured by quantitative PCR, the total volume of fluids aerosolized during speaking, as measured by different researchers using various technologies, differs by several orders of magnitude. We compared collection methods in which the aerosols first enter into a low-humidity chamber either by direct injection or via commonly used funnel and tubing arrangements, followed by standard optical particle sizer measurement. This "collect first, measure later" approach sacrifices the recording of the temporal correlation between aerosol generation and sound types such as plosives and vowels. However, the direct-injection mode prevents inertia deposition associated with the funnel arrangements and reveals far more intermediate-size (5–20 μm in diameter) particles that can dominate the total mass of ejected respiratory aerosol. The larger aerosol mass observed with our method partially reconciles the large discrepancy between the SARS-CoV-2 infectious dose estimated from superspreader event analyses and that from human challenge data. Our results also impact measures to combat airborne virus transmission because they indicate that aerosols that settle faster than good room ventilation rates can dominate this process. [ABSTRACT FROM AUTHOR]
Copyright of Atmosphere is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:20734433
DOI:10.3390/atmos15050570