دورية أكاديمية

Control of phosphorus release from sediment by iron/aluminum co-modified zeolite: efficiency, mechanism, and response of microbial communities in sediment.

التفاصيل البيبلوغرافية
العنوان: Control of phosphorus release from sediment by iron/aluminum co-modified zeolite: efficiency, mechanism, and response of microbial communities in sediment.
المؤلفون: Zhou, Jiayang, Lin, Jianwei, Zhan, Yanhui
المصدر: Environmental Science & Pollution Research; May2024, Vol. 31 Issue 23, p33708-33732, 25p
مصطلحات موضوعية: IRON, MICROBIAL communities, PHOSPHORUS in water, SEDIMENTS, ZEOLITES, DIFFUSION gradients, SEDIMENT control, ECOLOGICAL risk assessment
مستخلص: The efficiency of iron/aluminum co-modified zeolite (FeAl-Z) covering and amendment for controlling the internal loading of phosphorus (P) from sediment to the overlying water (OW) and its controlling mechanism were explored. The response of the composition of sedimentary microbial communities in sediment and their function to the FeAl-Z capping and amendment was also examined. FeAl-Z showed good removal performance for phosphate in aqueous solution. The maximum phosphate adsorption quantity for FeAl-Z at pH 7 attained 11.2 mg P/g. The release of sediment endogenous phosphorus to OW can be successfully restrained by the FeAl-Z covering and amendment, and the suppression ability of FeAl-Z covering was stronger than that of FeAl-Z amendment. Under the capping or amendment condition, FeAl-Z can effectively inactivate the labile phosphorus measured by diffusion gradient in thin film (DGT-LP) in the overlying water and surface sediment. The added FeAl-Z transformed redox-sensitive phosphorus (BD-P) to metal oxide-bound phosphorus (NaOH-IP) and residual phosphorus (Res-P) in sediment, which increased the stability of inorganic phosphorus in the sediment. The passivation of soluble reactive phosphorus (SRP) and DGT-LP in the surface sediment by FeAl-Z significantly contributed to the inhibition of sediment endogenous phosphorus release to OW by the FeAl-Z capping, and the passivation of SRP, DGT-LP and mobile phosphorus in the surface sediment played a pivotal role in the control of sediment internal phosphorus release by the FeAl-Z amendment. The FeAl-Z amendment and capping did not increase the liberation risk of Fe from sediment, and the microorganisms in the sediments under the conditions of FeAl-Z amendment and covering still can perform good ecological functions. Results of this research demonstrate that FeAl-Z capping has high application potential in the control of phosphorus transfer from sediment to OW. [ABSTRACT FROM AUTHOR]
Copyright of Environmental Science & Pollution Research is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:09441344
DOI:10.1007/s11356-024-33482-9