دورية أكاديمية

Fluoxetine Can Cause Epileptogenesis and Aberrant Neurogenesis in Male Wild-Type Mice.

التفاصيل البيبلوغرافية
العنوان: Fluoxetine Can Cause Epileptogenesis and Aberrant Neurogenesis in Male Wild-Type Mice.
المؤلفون: Musaelyan, Ksenia, Horowitz, Mark A., McHugh, Stephen, Szele, Francis G.
المصدر: Developmental Neuroscience; 2024, Vol. 46 Issue 3, p158-166, 9p
مستخلص: Antidepressants in general, and fluoxetine in particular, increase adult hippocampal neurogenesis (AHN) in mice. Here we asked how the antidepressant fluoxetine affects behavior and AHN in a corticosterone model of depression. In three groups of adult male C57BL/6j mice, we administered either vehicle (VEH), corticosterone (CORT) treatment to induce a depression-like state, or corticosterone plus a standard dose of fluoxetine (CORT+FLX). Following treatment, mice performed the open field test, the novelty suppressed feeding (NSF) test, and the splash test. Neurogenesis was assessed by means of immunohistochemistry using BrdU and neuronal maturation markers. Unexpectedly, 42% of the CORT+FLX-treated mice exhibited severe weight loss, seizures, and sudden death. As expected, the CORT-treated group had altered behaviors compared to the VEH group, but the CORT+FLX mice that survived did not show any behavioral improvement compared to the CORT group. Antidepressants generally increase neurogenesis and here we also found that compared to CORT mice, CORT+FLX mice that survived had a significantly greater density of BrdU+, BrdU+DCX+, and BrdU+NeuN+ cells, suggesting increased neurogenesis. Moreover, the density of BrdU+NeuN+ cells was increased in an aberrant location, the hilus, of CORT+FLX mice, similar to previous studies describing aberrant neurogenesis following seizures. In conclusion, fluoxetine could induce considerable adverse effects in wild-type mice, including seizure-like activity. Fluoxetine-induced neurogenesis increases could be related to this activity; therefore, proneurogenic effects of fluoxetine and other antidepressants, especially in the absence of any behavioral therapeutic effects, should be interpreted with caution. [ABSTRACT FROM AUTHOR]
Copyright of Developmental Neuroscience is the property of Karger AG and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:03785866
DOI:10.1159/000531478