دورية أكاديمية

Statistical Predictability of Euro-Mediterranean Subseasonal Anomalies: The TeWA Approach.

التفاصيل البيبلوغرافية
العنوان: Statistical Predictability of Euro-Mediterranean Subseasonal Anomalies: The TeWA Approach.
المؤلفون: Redolat, Darío, Monjo, Robert
المصدر: Weather & Forecasting; Jun2024, Vol. 39 Issue 6, p899-914, 16p
مصطلحات موضوعية: PRECIPITATION anomalies, OCEAN-atmosphere interaction, NUMERICAL weather forecasting, OCEAN temperature, MEDITERRANEAN climate, TELECONNECTIONS (Climatology)
مستخلص: It is widely known from energy balances that global oceans play a fundamental role in atmospheric seasonal anomalies via coupling mechanisms. However, numerical weather prediction models still have limitations in long-term forecasting due to their nonlinear sensitivity to initial deep oceanic conditions. As the Mediterranean climate has highly unpredictable seasonal variability, we designed a complementary method by supposing that 1) delayed teleconnection patterns provide information about ocean–atmosphere coupling on subseasonal time scales through the lens of 2) partially predictable quasi-periodic oscillations since 3) forecast signals can be extracted by smoothing noise in a continuous lead-time horizon. To validate these hypotheses, the subseasonal predictability of temperature and precipitation was analyzed at 11 reference stations in the Mediterranean area in the 1993–2021 period. The novel method, presented here, consists of combining lag-correlated teleconnections (15 indices) with self-predictability techniques of residual quasi-oscillation based on wavelet (cyclic) and autoregressive integrated moving average (ARIMA) (linear) analyses. The prediction skill of this teleconnection–wavelet–ARIMA (TeWA) combination was cross-validated and compared to that of the ECMWF's Seasonal Forecast System 5 (SEAS5)–ECMWF model (3 months ahead). Results show that the proposed TeWA approach improves the predictability of first-month temperature and precipitation anomalies by 50%–70% compared with the forecast of SEAS5. On a moving-averaged daily scale, the optimum prediction window is 30 days for temperature and 16 days for precipitation. The predictable ranges are consistent with atmospheric bridges in teleconnection patterns [e.g., Upper-Level Mediterranean Oscillation (ULMO)] and are reflected by spatial correlation with sea surface temperature (SST). Our results suggest that combinations of the TeWA approach and numerical models could boost new research lines in subseasonal-to-seasonal forecasting. Significance Statement: The Mediterranean climate presents a high natural variability that makes skillful seasonal forecasts very difficult to achieve. We propose to complement the current forecasting methods with a statistical approach that combines two conceptual models: First, climate anomalies (cold/warm or dry/wet periods) are considered as smooth waves (with slow changes); and second, atmospheric and oceanic indices perform the role of atmosphere–ocean interactions, which impact Mediterranean climate variability in a delayed way. The key findings are that combining both sides, a better predictability of climate variability is provided, which is an opportunity to improve natural resource management and planning. [ABSTRACT FROM AUTHOR]
Copyright of Weather & Forecasting is the property of American Meteorological Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:08828156
DOI:10.1175/WAF-D-23-0061.1