دورية أكاديمية

Emplacement of shergottites in the Martian crust inferred from three‐dimensional petrofabric and crystal size distribution analyses.

التفاصيل البيبلوغرافية
العنوان: Emplacement of shergottites in the Martian crust inferred from three‐dimensional petrofabric and crystal size distribution analyses.
المؤلفون: Eckley, S. A., Ketcham, R. A., Liu, Y., Gross, J., M c Cubbin, F. M.
المصدر: Meteoritics & Planetary Science; Jul2024, Vol. 59 Issue 7, p1523-1545, 23p
مصطلحات موضوعية: MARTIAN meteorites, COMPUTED tomography, IGNEOUS rocks, ULTRABASIC rocks, CRYSTALS, LAVA flows
مستخلص: Shergottites are mafic to ultramafic igneous rocks that represent the majority of known Martian meteorites. They are subdivided into gabbroic, poikilitic, basaltic, and olivine–phyric categories based on differences in mineralogy and textures. Their geologic contexts are unknown, so analyses of crystal sizes and preferred orientations have commonly been used to infer where shergottites solidified. Such environments range from subsurface cumulates to shallow intrusives to extrusive lava flows, which all have contrasting implications for interactions with crustal material, cooling histories, and potential in situ exposure at the surface. In this study, we present a novel three‐dimensional (3‐D) approach to better understand the solidification environments of these samples and improve our knowledge of shergottites' geologic contexts. Shape preferred orientations of most phases and crystal size distributions of late‐forming minerals were measured in 3‐D using X‐ray computed tomography (CT) on eight shergottites representing the gabbroic, poikilitic, basaltic, and olivine–phyric categories. Our analyses show that highly anisotropic, rod‐like pyroxene crystals are strongly foliated in the gabbroic samples but have a weaker foliation and a mild lineation in the basaltic sample, indicating a directional flow component in the latter. Star volume distribution analyses revealed that most phases (maskelynite, pyroxene, olivine, and oxides/sulfides) preserve a foliated texture with variable strengths, and that the phases within individual samples are strongly to moderately aligned with respect to one another. In combination with relative cooling rates during the final stages of crystallization determined from interstitial oxide/sulfide crystal size distribution analyses, these results indicate that the olivine–phyric samples were emplaced as shallow intrusives (e.g., dikes/sills) and that the gabbroic, poikilitic, and basaltic samples were emplaced in deeper subsurface environments. [ABSTRACT FROM AUTHOR]
Copyright of Meteoritics & Planetary Science is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:10869379
DOI:10.1111/maps.14165