دورية أكاديمية

Vertical root profiles of grey alder (Alnus incana) trees growing in highly disturbed river environments.

التفاصيل البيبلوغرافية
العنوان: Vertical root profiles of grey alder (Alnus incana) trees growing in highly disturbed river environments.
المؤلفون: Stamer, Matteo, Gurnell, Angela M., Bertoldi, Walter
المصدر: River Research & Applications; Jul2024, Vol. 40 Issue 6, p1001-1011, 11p
مصطلحات موضوعية: ALDER, BLACK poplar, TENSILE architecture, SEDIMENTATION & deposition, TENSILE strength, ALNUS glutinosa
مستخلص: The ability of plants to colonize the fluvial environment and withstand uprooting by floods is largely controlled by the anchoring effect of roots. We characterized the root architecture and tensile strength of Alnus incana, a riparian tree species of the Betulaceae family for which there are no systematic observations of its vertical root structure. Four A. incana individuals and two nearby Populus nigra 3–10 years old growing on bars in gravel‐bed rivers were excavated. Their root structure was characterized in terms of root diameter, age, and depth and was related to sediment grain size and scour or deposition by floods. Root tensile strength was also measured as a function of root diameter using a load cell and displacement transducer attached to individual roots. The architecture of A. incana roots differed from that of nearby P. nigra, as all roots were in fine, sandy sediments, growing in one or more dense radial layers of which the most prominent was 0.2–0.3 m below the surface. The layers reflect deposition of fine sediments during floods. New fine sediment deposits promote the growth of a new root layer close to the aggraded ground surface. Root tensile strength was similar to Salicaceae species. These observations indicate that A. incana colonizes habitats that have already received fine sediment deposition, most likely induced by other young plants, especially Salicaceae species. A. incana then provides a high near‐surface root biomass, potentially further stabilizing surfaces and playing a complementary role as an ecosystem engineer. [ABSTRACT FROM AUTHOR]
Copyright of River Research & Applications is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:15351459
DOI:10.1002/rra.4287