دورية أكاديمية

Application of Anti-Solvent Crystallization for High-Purity Potash Production from K-Feldspar Leaching Solution.

التفاصيل البيبلوغرافية
العنوان: Application of Anti-Solvent Crystallization for High-Purity Potash Production from K-Feldspar Leaching Solution.
المؤلفون: Shakibania, Sina, Sundqvist-Öqvist, Lena, Rosenkranz, Jan, Ghorbani, Yousef
المصدر: Processes; Jul2024, Vol. 12 Issue 7, p1385, 26p
مصطلحات موضوعية: POTASSIUM chloride, CRYSTAL morphology, ETHYLENE glycol, ISOPROPYL alcohol, ORTHOCLASE
مستخلص: Potassium-containing feldspars provide a high potential for producing potash, a product with widespread use in agriculture. The present work assesses applying the anti-solvent crystallization method for the purification and recovery of high-purity muriate of potash (KCl) from feldspar leaching solutions. Initially, screening experiments were carried out on a synthetic leaching solution with the aim of analyzing the crystallization behavior of key components. Screening experiments were performed using five anti-solvents, namely methanol, ethanol, acetone, 2-propanol, and ethylene glycol. Acetone and 2-propanol were viable options for crystallization of potassium chloride. Then, the effects of anti-solvent ratio (O/A), time, and anti-solvent addition rate on potassium-chloride crystallization were further investigated using acetone and 2-propanol. A recovery of 83% of potassium was achieved when using acetone at the O/A of 5 with the addition rate of 10 mL/min, at room temperature with a hold time of 180 min. The optimum conditions for 2-propanol were determined to be similar, except for using a 5 mL/min addition rate for 79% recovery. The final muriate of potash products had a purity of over 99.9% using either of the anti-solvent. However, differences in morphology and crystal size of products were observed. Acetone-formed potash crystals were aggregates of cubic crystals with an average size of 3 microns, while 2-propanol-formed potash crystals were 20 microns in size as cubic particles with a hollow core. Despite having almost the same performance in potassium recovery, acetone was found to be a more feasible anti-solvent for potash recovery due to simpler downstream solvent recovery. [ABSTRACT FROM AUTHOR]
Copyright of Processes is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:22279717
DOI:10.3390/pr12071385