دورية أكاديمية

Site-selective α-C(sp3)–H arylation of dialkylamines via hydrogen atom transfer catalysis-enabled radical aryl migration.

التفاصيل البيبلوغرافية
العنوان: Site-selective α-C(sp3)–H arylation of dialkylamines via hydrogen atom transfer catalysis-enabled radical aryl migration.
المؤلفون: Xu, Jie, Li, Ruihan, Ma, Yijian, Zhu, Jie, Shen, Chengshuo, Jiang, Heng
المصدر: Nature Communications; 8/8/2024, Vol. 15 Issue 1, p1-12, 12p
مصطلحات موضوعية: ABSTRACTION reactions, ARYL radicals, ACTIVATION energy, ARYLATION, PIVOT bearings
مستخلص: Site-selective C(sp3)–H arylation is an appealing strategy to synthesize complex arene structures but remains a challenge facing synthetic chemists. Here we report the use of photoredox-mediated hydrogen atom transfer (HAT) catalysis to accomplish the site-selective α-C(sp3)–H arylation of dialkylamine-derived ureas through 1,4-radical aryl migration, by which a wide array of benzylamine motifs can be incorporated to the medicinally relevant systems in the late-stage installation steps. In contrast to previous efforts, this C–H arylation protocol exhibits specific site-selectivity, proforming predominantly on sterically more-hindered secondary and tertiary α-amino carbon centers, while the C–H functionalization of sterically less-hindered N-methyl group can be effectively circumvented in most cases. Moreover, a diverse range of multi-substituted piperidine derivatives can be obtained with excellent diastereoselectivity. Mechanistic and computational studies demonstrate that the rate-determining step for methylene C–H arylation is the initial H atom abstraction, whereas the radical ipso cyclization step bears the highest energy barrier for N-methyl functionalization. The relatively lower activation free energies for secondary and tertiary α-amino C–H arylation compared with the functionalization of methylic C–H bond lead to the exceptional site-selectivity. Site-selective C(sp3)–H arylation is an appealing strategy to synthesize complex arene structures but remains a challenge facing synthetic chemists. Here the authors report the use of photoredox-mediated hydrogen atom transfer (HAT) catalysis to accomplish the site-selective α-C(sp3)–H arylation of dialkylamine-derived ureas through 1,4-radical aryl migration. [ABSTRACT FROM AUTHOR]
Copyright of Nature Communications is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:20411723
DOI:10.1038/s41467-024-51239-3