دورية أكاديمية

Genotype × environment interaction: trade-offs between the agronomic performance and stability of durum (Triticum turgidum) wheat to stem-rust resistance in Kenya.

التفاصيل البيبلوغرافية
العنوان: Genotype × environment interaction: trade-offs between the agronomic performance and stability of durum (Triticum turgidum) wheat to stem-rust resistance in Kenya.
المؤلفون: Ogutu, Emmaculate A., Madahana, Sammy L., Bhavani, Sridhar, Macharia, Godwin
المصدر: Frontiers in Plant Science; 2024, p1-15, 15p
مصطلحات موضوعية: GENOTYPE-environment interaction, EMMER wheat, GENETIC variation, GRAIN yields, AGRICULTURAL research, DURUM wheat
مستخلص: Stem rust significantly threatens durum wheat production, often resulting in substantial yield losses. To better understand resistance mechanisms and the stability of durum lines in stem rust-prone environments, this study evaluated 49 durum genotypes over three seasons at the Kenya Agricultural and Livestock Research Organization in Njoro. Utilizing 7 × 7 alpha lattice design, we assessed adult-plant resistance, monitored disease progression through final disease score (FDS) and area under the disease progress curve (AUDPC), and evaluated agronomic performance. Statistical analyses revealed significant seasonal and genotypic effects on FDS, AUDPC, spike length, and grain yield (p=0.01; p=0.001), with important genotype-by-season interactions (p=0.05; p=0.001). Broadsense heritability for AUDPC was high at 0.91 and moderate at 0.35 for kernels per spike, underscoring the genetic basis of these traits. Notably, we observed negative correlations between disease parameters and agronomic traits, suggesting potential trade-offs. GGE biplot analysis singled out the first season (main season of 2019) as crucial for evaluating stem rust resistance and identified several durum lines, such as G45 and G48, as consistently resistant across all conditions. Furthermore, this analysis highlighted G45, G48, G176 and G189 as the highest yielding and most stable lines. The discovery of these resistant and high-performing genotypes is critical for enhancing durum breeding programs, helping to mitigate the impact of stem rust and improve yield stability. [ABSTRACT FROM AUTHOR]
Copyright of Frontiers in Plant Science is the property of Frontiers Media S.A. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:1664462X
DOI:10.3389/fpls.2024.1427483