دورية أكاديمية

Isolation and optimisation of polyphosphate accumulating bacteria for bio-treatment of phosphate from industrial wastewater.

التفاصيل البيبلوغرافية
العنوان: Isolation and optimisation of polyphosphate accumulating bacteria for bio-treatment of phosphate from industrial wastewater.
المؤلفون: Fathy, Reham, Omara, Ahmed M.
المصدر: Environmental Technology; Sep2024, Vol. 45 Issue 21, p4314-4333, 20p
مصطلحات موضوعية: PHOSPHATE removal (Sewage purification), AEROBIC bacteria, KLEBSIELLA pneumoniae, MIXED culture (Microbiology), SODIUM acetate
مستخلص: Phosphorus in wastewater influents is a global issue. Controlling eutrophic water is crucial. Biological phosphorus removal is an economically and environmentally sustainable method for removing phosphorus from wastewater. This study aims to isolate and improve the capacity of aerobic phosphorus-removing bacteria to reduce excessive phosphate concentrations in the environment. Only three out of fourteen bacterial isolates demonstrated the highest phosphate removal efficiency using Toluidine blue-O. Klebsiella pneumoniae 6A, Klebsiella quasipneumoniae 6R, and Enterobacter mori 8R were isolated from activated sludge and identified by 16srRNA. In a single-factor experiment, the effect of incubation periods, phosphate concentrations, carbon sources, sodium acetate concentrations, temperature, pH, and irradiation dosages were studied. Seventy-two hours of incubation, 55 mg/L PO4, sodium acetate as the carbon source, 30°C and pH 7 resulted in maximum phosphorus removal. After optimising the parameters, the removal efficiency of Klebsiella pneumoniae 6A, Klebsiella quasipneumoniae 6R, and Enterobacter mori 8R increased from 73.5% to 85.1%, 79.1% to 98.1%, and 80.6% to 91.9%, respectively. Gamma irradiation showed significant results only in Klebsiella pneumoniae 6A where 100 Gy increased the phosphorous removal efficiency from 85.1% to 100%. Immobilised mixed culture of the three strains adapted better to 100 mg/L Phosphorus than pure cells. Therefore, this technique holds great new promise for phosphorus-contaminated sites bioremediation. [ABSTRACT FROM AUTHOR]
Copyright of Environmental Technology is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:09593330
DOI:10.1080/09593330.2023.2248558