دورية أكاديمية

Accuracy, transferability, and computational efficiency of interatomic potentials for simulations of carbon under extreme conditions.

التفاصيل البيبلوغرافية
العنوان: Accuracy, transferability, and computational efficiency of interatomic potentials for simulations of carbon under extreme conditions.
المؤلفون: Willman, Jonathan T., Gonzalez, Joseph M., Nguyen-Cong, Kien, Hamel, Sebastien, Lordi, Vincenzo, Oleynik, Ivan I.
المصدر: Journal of Chemical Physics; 8/28/2024, Vol. 161 Issue 8, p1-15, 15p
مستخلص: Large-scale atomistic molecular dynamics (MD) simulations provide an exceptional opportunity to advance the fundamental understanding of carbon under extreme conditions of high pressures and temperatures. However, the fidelity of these simulations depends heavily on the accuracy of classical interatomic potentials governing the dynamics of many-atom systems. This study critically assesses several popular empirical potentials for carbon, as well as machine learning interatomic potentials (MLIPs), in their ability to simulate a range of physical properties at high pressures and temperatures, including the diamond equation of state, its melting line, shock Hugoniot, uniaxial compressions, and the structure of liquid carbon. Empirical potentials fail to accurately predict the behavior of carbon under high pressure–temperature conditions. In contrast, MLIPs demonstrate quantum accuracy, with Spectral Neighbor Analysis Potential (SNAP) and atomic cluster expansion (ACE) being the most accurate in reproducing the density functional theory results. ACE displays remarkable transferability despite not being specifically trained for extreme conditions. Furthermore, ACE and SNAP exhibit superior computational performance on graphics processing unit-based systems in billion atom MD simulations, with SNAP emerging as the fastest. In addition to offering practical guidance in selecting an interatomic potential with a fine balance of accuracy, transferability, and computational efficiency, this work also highlights transformative opportunities for groundbreaking scientific discoveries facilitated by quantum-accurate MD simulations with MLIPs on emerging exascale supercomputers. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Chemical Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00219606
DOI:10.1063/5.0218705