دورية أكاديمية

Environmental dynamics of rainfall patterns: a comparative analysis of intensity-duration-frequency curves of metropolitan cities in Pakistan.

التفاصيل البيبلوغرافية
العنوان: Environmental dynamics of rainfall patterns: a comparative analysis of intensity-duration-frequency curves of metropolitan cities in Pakistan.
المؤلفون: Zaineb, Safeera, Bashir, Muzaffar
المصدر: Theoretical & Applied Climatology; Sep2024, Vol. 155 Issue 9, p9067-9080, 14p
مصطلحات موضوعية: STORM surges, CITIES & towns, ARID regions, CONTOURS (Cartography), URBAN planners, RAINFALL
مستخلص: The analysis of extreme rainfall parameters, particularly rainfall intensities, plays a serious role in the protection, productivity, and resilience of hydrological systems against storms and floods. This is especially important in arid and semi-arid regions like Pakistan, where inclusive long-term rainfall data with short aggregation periods is limited. Addressing this need, the current study develops intensity-duration-frequency (IDF) curves using rainfall data from four cities across different elevations and geographical regions within Pakistan. By statistically fitting the Gumbel distribution to observed data at different durations (1 h, 6 h, 12 h, and 24 h), the study originates rainfall intensities for distinct return periods. The analysis discloses an average annual rainfall of 25.42 mm, 9.62 mm, 9.25 mm, and 28.02 mm, with standard deviations of 6.45 mm, 9.67 mm, 7.50 mm, and 11.96 mm for Lahore, Karachi, Quetta, and Peshawar, respectively, based on data from 2001 to 2022. Notably, the assessed rainfall intensities for various return periods (2, 5, 10, and 25 years) are higher in mountainous regions compared to interior and coastal regions. Additionally, the study develops empirical parameters for the IDF formula for each city through a linear regression technique, allowing the prediction of rainfall intensities based on desired return periods. Finally, contour maps for all the parameters were created, which can be used to determine IDF relationships for un-gauged locations. These outcomes underscore the vulnerability of mountainous regions to extreme rainfall events, focus the necessity for updated infrastructure and robust flood management strategies. The derived IDF curves and empirical parameters offer valuable tools for policymakers and urban planners to plan effective interventions aimed at mitigating the adverse impacts of extreme rainfall in Pakistan. [ABSTRACT FROM AUTHOR]
Copyright of Theoretical & Applied Climatology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:0177798X
DOI:10.1007/s00704-024-05166-4