دورية أكاديمية

Methodological approach to assess the effect of soil ageing on selenium behaviour: first results concerning mobility and solid fractionation of selenium.

التفاصيل البيبلوغرافية
العنوان: Methodological approach to assess the effect of soil ageing on selenium behaviour: first results concerning mobility and solid fractionation of selenium.
المؤلفون: F. Coppin, C. Chabroullet, A. Martin-Garin, J. Balesdent, J. Gaudet
المصدر: Biology & Fertility of Soils; Jun2006, Vol. 42 Issue 5, p379-386, 8p
مصطلحات موضوعية: ORGANIC compounds, ARABLE land, HUMUS, NONMETALS
مستخلص: The aim of the study presented here is to determine the impact of short- and medium-term transformations (0–3 years) of the soil organic matter (SOM) on the major processes and parameters that enable or inhibit selenite, Se(+IV), transfers between the soil components (solid, liquid or gaseous). Three types of soil of similar mineralogical origin but containing diverse quantities and qualities of SOM were first contaminated with Se(+IV) and incubated at 28°C. Soils were sampled throughout the incubation period to characterise the mobility of Se (batch and soil column experiments) and also its fractionation within the soil compartments (selective extractions and size-density fractionation). The following are the main results obtained within the first month of incubation. (a) Selenium was partly volatilized during soil incubation (<0.1%), (b) Se extracted with CaCl2 (5×10−4 M) was equally small for the three soil samples (∼1–5%), suggesting that Se was strongly sorbed on the solid phase and (c) at least 10% of Se was associated to the particulate organic matter % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX!% MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX% garmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz% aebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq% Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq% Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeWaeaaakeaada% qadaqaaiaabcfacaqGpbGaaeytamaaBaaaleaaieaacaWF+aGaaeyn% aiaabcdacqaH8oqBcaqGTbaabeaaaOGaayjkaiaawMcaaiaacYcaaa% a!414D!whereas 60% of Se was extracted with soil humic substances. These results suggested that both SOM quantity and quality played a significant role in selenium retention. Furthermore, comparison between experimental and predicted variations of CO2 fluxes (due to C mineralisation) and soil biomasses are presented. By this way, we estimated the capacity of the RothC model as an experimental gauging tool in the prediction of C turnover on a laboratory scale. [ABSTRACT FROM AUTHOR]
Copyright of Biology & Fertility of Soils is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index