دورية أكاديمية

Photoluminescence of rare earth3+ doped uniaxially aligned HfO2 nanotubes prepared by sputtering with electrospun polyvinylpyrolidone nanofibers as templates.

التفاصيل البيبلوغرافية
العنوان: Photoluminescence of rare earth3+ doped uniaxially aligned HfO2 nanotubes prepared by sputtering with electrospun polyvinylpyrolidone nanofibers as templates.
المؤلفون: Liu, L. X., Ma, Z. W., Xie, Y. Z., Su, Y. R., Zhao, H. T., Zhou, M., Zhou, J. Y., Li, J., Xie, E. Q.
المصدر: Journal of Applied Physics; Jan2010, Vol. 107 Issue 2, p024309-024314, 5p, 2 Black and White Photographs, 5 Graphs
مصطلحات موضوعية: PHYSICS research, SEMICONDUCTOR doping, PHOTOLUMINESCENCE, NANOTUBES, NANOSTRUCTURED materials, SPUTTERING (Physics), SPECTRUM analysis, RARE earth metals
مستخلص: Rare earth (RE) ions (Eu3+,Tb3+) doped uniaxially aligned HfO2 nanotubes were prepared by radio frequency sputtering with electrospun polyvinylpyrolidone (PVP) nanofiber templates. The as-sputtered samples were annealed at different temperatures (500–1000 °C) in O2 ambient in order to remove their PVP cores and make the HfO2 shells well crystallized. Morphologies and crystal configuration of the samples were investigated by optical microscope, scanning electron microscopy, transmission electron microscopy, x–ray diffraction, and Raman spectroscopy. The nanotubes have uniform intact structure with an average diameter of 200 nm and a wall thickness of about 25 nm. Photoluminescence (PL) properties of the RE doped nanotubes have been studied in detail. The emission peaks of the aligned HfO2:Eu and HfO2:Tb nanotubes could correspond to the 5D07FJ (J=0–2) transitions of Eu3+ and the 5D47FJ (J=3–6) transitions of Tb3+, respectively. The PL intensities of the HfO2:RE3+ nanotubes were higher by several orders of magnitude than that of the films. This enhancement in the PL could be ascribed to the high density of surface states of HfO2:RE3+ nanotubes. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Applied Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00218979
DOI:10.1063/1.3290974