دورية أكاديمية

The novel PAR-1-binding protein MTCL1 has crucial roles in organizing microtubules in polarizing epithelial cells.

التفاصيل البيبلوغرافية
العنوان: The novel PAR-1-binding protein MTCL1 has crucial roles in organizing microtubules in polarizing epithelial cells.
المؤلفون: Yoshinori Sato, Masashi Akitsu, Yoshiko Amano, Kazunari Yamashita, Mariko Ide, Kyoko Shimada, Akio Yamashita, Hisashi Hirano, Noriaki Arakawa, Takahisa Maki, Ikuko Hayashi, Shigeo Ohno, Atsushi Suzuki
المصدر: Journal of Cell Science; 10/15/2013, Vol. 126 Issue 20, p4671-4683, 13p
مصطلحات موضوعية: CELL physiology, MICROTUBULES, EPITHELIAL cells, N-terminal residues, CENTROSOMES, CROSSLINKING (Polymerization)
مستخلص: The establishment of epithelial polarity is tightly linked to the dramatic reorganization of microtubules (MTs) from a radial array to a vertical alignment of non-centrosomal MT bundles along the lateral membrane, and a meshwork under the apical and basal membranes. However, little is known about the underlying molecular mechanism of this polarity-dependent MT remodeling. The evolutionarily conserved cell polarity-regulating kinase PAR-1 (known as MARK in mammals), whose activity is essential for maintaining the dynamic state of MTs, has indispensable roles in promoting this process. Here, we identify a novel PAR-1-binding protein, which we call microtubule crosslinking factor 1 (MTCL1), that crosslinks MTs through its N-terminal MT-binding region and subsequent coiledcoil motifs. MTCL1 colocalized with the apicobasal MT bundles in epithelial cells, and its knockdown impaired the development of these MT bundles and the epithelial-cell-specific columnar shape. Rescue experiments revealed that the N-terminal MT-binding region was indispensable for restoring these defects of the knockdown cells. MT regrowth assays indicated that MTCL1 was not required for the initial radial growth of MTs from the apical centrosome but was essential for the accumulation of non-centrosomal MTs to the sublateral regions. Interestingly, MTCL1 recruited a subpopulation of PAR-1b (known as MARK2 in mammals) to the apicobasal MT bundles, and its interaction with PAR-1b was required for MTCL1-dependent development of the apicobasal MT bundles. These results suggest that MTCL1 mediates the epithelial-cell-specific reorganization of non-centrosomal MTs through its MT-crosslinking activity, and cooperates with PAR-1b to maintain the correct temporal balance between dynamic and stable MTs within the apicobasal MT bundles. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Cell Science is the property of Company of Biologists Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00219533
DOI:10.1242/jcs.127845