دورية أكاديمية

Cryptic ligand on collagen matrix unveiled by MMP13 accelerates bone tissue regeneration via MMP13/Integrin α3/RUNX2 feedback loop.

التفاصيل البيبلوغرافية
العنوان: Cryptic ligand on collagen matrix unveiled by MMP13 accelerates bone tissue regeneration via MMP13/Integrin α3/RUNX2 feedback loop.
المؤلفون: Arai, Yoshie, Choi, Bogyu, Kim, Byoung Ju, Park, Sunghyun, Park, Hyoeun, Moon, James J., Lee, Soo-Hong
المصدر: Acta Biomaterialia; Apr2021, Vol. 125, p219-230, 12p
مصطلحات موضوعية: BONE regeneration, RUNX proteins, MESENCHYMAL stem cell differentiation, FOCAL adhesion kinase, CELL communication, BONE morphogenetic proteins, COLLAGEN, MATRIX metalloproteinases
مستخلص: Extracellular matrix (ECM) remodeling is necessary for the development and self-healing of tissue, and the process is tissue specific. Matrix metalloproteinases (MMPs) play a role in ECM remodeling by unwinding and cleaving ECM. We hypothesized that ECM remodeling by MMPs is involved in the differentiation of stem cells into specific lineages during self-healing. To prove the hypothesis, we investigated which MMPs are involved in the osteogenic differentiation of human mesenchymal stem cells (hMSCs) grown on a type I collagen (Col I) matrix, and we found that specifically high expression of MMP13 in hMSCs grown on a Col I matirx during osteogenic differentiation. Moreover, knocking down of MMP13 decreased the osteogenic differentiation of hMSCs grown on a Col I matrix. In addition, pre-treatment of recombinant human MMP13 lead to remodeling of Col I matrix and increased the osteogenic differentiation of hMSCs and in vivo bone formation following the upregulation of the expression of runt-related transcription factor 2 (RUNX2), integrin α3 (ITGA3), and focal adhesion kinase. Furthermore, the transcription factor RUNX2 bound to the MMP13 promoter. These results suggest that growth on a remodeled Col I matrix by MMP13 stimulates osteogenic differentiation of hMSCs and self-healing of bone tissue via an MMP13/ITGA3/RUNX2 positive feedback loop. Self-healing of tissue could be the key to treating diseases that cannot be overcome by present technology. We investigated the mechanism underlying the self-healing of tissue and we found that the osteogenic differentiation was increased in hMSCs grown on a remodeled Col I matrix by the optimized concentration of MMP13 not in hMSCs grown on a Col I fragments cleaved by a high concentration of MMP13. In addition, we found the remodeled Col I matrix by MMP13 increased the osteogenic capacity through a MMP13/integrin α3/RUNX2 positive feedback loop. This result would be able to not only provide a strategy for bone tissue-specific functional materials following strong evidence about the self-healing mechanism of bone through the interaction between stem cells and the ECM matrix. As such, we strongly believe our finding will be of interest to researchers studying biomaterials, stem cell biology and matrix interaction for regenerative medicine and therapy. [Display omitted] [ABSTRACT FROM AUTHOR]
Copyright of Acta Biomaterialia is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Supplemental Index
الوصف
تدمد:17427061
DOI:10.1016/j.actbio.2021.02.042