دورية أكاديمية

RLAT: Lightweight Transformer for High-Resolution Range Profile Sequence Recognition.

التفاصيل البيبلوغرافية
العنوان: RLAT: Lightweight Transformer for High-Resolution Range Profile Sequence Recognition.
المؤلفون: Xiaodan Wang, Peng Wang, Yafei Song, Qian Xiang, Jingtai Li
المصدر: Computer Systems Science & Engineering; 2024, Vol. 48 Issue 1, p217-246, 30p
مصطلحات موضوعية: ELECTRIC transformers, LIGHTWEIGHT materials, DEEP learning, INFORMATION retrieval, ROBUST control
مستخلص: High-resolution range profile (HRRP) automatic recognition has been widely applied to military and civilian domains. Present HRRP recognition methods have difficulty extracting deep and global information about the HRRP sequence, which performs poorly in real scenes due to the ambient noise, variant targets, and limited data. Moreover,most existingmethods improve the recognition performance by stacking a large number of modules, but ignore the lightweight of methods, resulting in over-parameterization and complex computational effort, which will be challenging to meet the deployment and application on edge devices. To tackle the above problems, this paper proposes an HRRP sequence recognition method based on a lightweight Transformer named RLAT, which consists of rotary position encoding, local-aggregated attention unit (LAU), and lightweight feedforward neural network (LW-FFN). Rotary position encoding is utilized to embed the relative position information for the HRRP sequence. Local aggregation attention unit can effectively aggregate and extract local features by local group linear transformation, and then the self-attention mechanism is adopted for perception and enhancement of global information. Thereby, the enhanced features are extracted by lightweight FFN. In addition, this paper adopts Label Smoothing regularization to add noise to the sample labels, which can improve the generalization performance of themethod. Finally, the effectiveness of the proposed method in real scenes is verified based on the MSTAR dataset, a real-world dataset for radar target recognition. Experimental results show that the proposed method achieves superior recognition performance compared to other remarkable methods and achieves significant generalization performance and robustness under variant sample and limited sample conditions. RLAT achieved an accuracy of 99.86% on the MSTAR standard dataset and 99.73% on the MSTAR variant dataset. In particular, it achieves an accuracy of 95.83% with only 274 training samples. Furthermore, the proposed method is more lightweight, with 90.90% reduction in the number of parameters and 96.70% reduction in the computation compared to the Vanilla Transformer, which facilitates deployment in edge devices. [ABSTRACT FROM AUTHOR]
Copyright of Computer Systems Science & Engineering is the property of Tech Science Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Supplemental Index
الوصف
تدمد:02676192
DOI:10.32604/csse.2023.039846