Derivatives of Plant Phenolic Compound Affect the Type III Secretion System of Pseudomonas aeruginosavia a GacS-GacA Two-Component Signal Transduction System

التفاصيل البيبلوغرافية
العنوان: Derivatives of Plant Phenolic Compound Affect the Type III Secretion System of Pseudomonas aeruginosavia a GacS-GacA Two-Component Signal Transduction System
المؤلفون: Yamazaki, Akihiro, Li, Jin, Zeng, Quan, Khokhani, Devanshi, Hutchins, William C., Yost, Angela C., Biddle, Eulandria, Toone, Eric J., Chen, Xin, Yang, Ching-Hong
المصدر: Antimicrobial Agents and Chemotherapy; October 2011, Vol. 56 Issue: 1 p36-43, 8p
مستخلص: ABSTRACTAntibiotic therapy is the most commonly used strategy to control pathogenic infections; however, it has contributed to the generation of antibiotic-resistant bacteria. To circumvent this emerging problem, we are searching for compounds that target bacterial virulence factors rather than their viability. Pseudomonas aeruginosa, an opportunistic human pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors by which it secretes and translocates T3 effector proteins into human host cells. The fact that this human pathogen also is able to infect several plant species led us to screen a library of phenolic compounds involved in plant defense signaling and their derivatives for novel T3 inhibitors. Promoter activity screening of exoS, which encodes a T3-secreted toxin, identified two T3 inhibitors and two T3 inducers of P. aeruginosaPAO1. These compounds alter exoStranscription by affecting the expression levels of the regulatory small RNAs RsmY and RsmZ. These two small RNAs are known to control the activity of carbon storage regulator RsmA, which is responsible for the regulation of the key T3SS regulator ExsA. As RsmY and RsmZ are the only targets directly regulated by GacA, our results suggest that these phenolic compounds affect the expression of exoSthrough the GacSA-RsmYZ-RsmA-ExsA regulatory pathway.
قاعدة البيانات: Supplemental Index
الوصف
تدمد:00664804
10986596
DOI:10.1128/AAC.00732-11