Flexible but robust Ti3C2Tx MXene/bamboo microfibril composite paper for high-performance wearable electronics

التفاصيل البيبلوغرافية
العنوان: Flexible but robust Ti3C2Tx MXene/bamboo microfibril composite paper for high-performance wearable electronics
المؤلفون: Jun Huang, Hao Zhang, You-Yong Wang, Yaqin Fu, Guang-He Dong, Shao-Yun Fu, Pei Huang, Feng-Lian Yi, Yuan-Qing Li, Wei-Bin Zhu, Zhen-Hua Tang
المصدر: Journal of Materials Chemistry A. 9:26758-26766
بيانات النشر: Royal Society of Chemistry (RSC), 2021.
سنة النشر: 2021
مصطلحات موضوعية: Supercapacitor, Materials science, Renewable Energy, Sustainability and the Environment, Electrical resistivity and conductivity, Composite number, Ultimate tensile strength, Stacking, General Materials Science, General Chemistry, Composite material, Pressure sensor, Capacitance, Voltage
الوصف: This work reports a flexible yet robust Ti3C2Tx MXene/bamboo microfibril (BF) composite paper via a simple vacuum filtration process. Due to the excellent compatibility between MXene and BF, the MXene/BF composite paper demonstrates simultaneously an excellent tensile strength of 49.5 MPa, higher than that of both MXene sheet and BF film alone and also among the top values compared with those in the literature, an excellent electrical conductivity as high as 4.8 × 103 S m−1 which is also higher even at a lower MXene content than those reported in the literature, and outstanding electrical stability with no detectable deterioration after 1000 cycles of stretching, bending and compression. As a result, the MXene/BF composite paper shows versatility for making various high-performance wearable electronics. Specifically, the as-prepared flexible pressure sensor by stacking exhibits a high sensitivity of 0.153 kPa−1 and a linear sensing performance in the pressure range of 0 to 2.5 kPa; the as-fabricated electric heater displays outstanding electrothermal performance, giving a temperature difference of 20 °C in air at the lowest input voltage of 2.5 V compared with those of the literature; the produced wearable symmetric all-solid-state supercapacitor achieves large enhancements in volumetric capacitance and gravimetric capacitance compared with the neat MXene supercapacitor and outstanding energy storage stability upon varied deformations. The MXene/BF composite paper with the above virtues is appealing for wide applications in multifunctional wearable electronics.
تدمد: 2050-7496
2050-7488
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::27c2b94ee359592b716cffe3b99059b7
https://doi.org/10.1039/d1ta08017b
حقوق: CLOSED
رقم الأكسشن: edsair.doi...........27c2b94ee359592b716cffe3b99059b7
قاعدة البيانات: OpenAIRE