Heat-Pipe-Assisted Air Cooling of Lithium-Titanate Prismatic Battery

التفاصيل البيبلوغرافية
العنوان: Heat-Pipe-Assisted Air Cooling of Lithium-Titanate Prismatic Battery
المؤلفون: Prakash S. Shinde, Pratik Naik
المصدر: Journal of Thermal Science and Engineering Applications. 15
بيانات النشر: ASME International, 2022.
سنة النشر: 2022
مصطلحات موضوعية: Fluid Flow and Transfer Processes, General Engineering, General Materials Science, Condensed Matter Physics
الوصف: The battery thermal management system (BTMS) is essential for lithium-ion batteries. At high application loads, excessive heat generation reduces the battery performance drastically and is also dangerous if the temperature of the battery is not maintained under limits. The heat pipe is a heat exchanger device with very high thermal conductivity. The present study was an attempt to find the effectiveness of the heat pipe attached to the battery under air cooling to reduce the temperature of the battery. The heat pipe can be flattened and bent hence it is very useful to extract heat from one place to another at a larger distance. In this paper, various arrangements of heat pipes with the lithium-titanate prismatic battery were considered with different wick porosity (0.45–0.7) as well as air velocity (3–8 m/s) and have discussed its effect on the temperature distribution of the battery. The present study about heat-pipe-assisted air cooling showed that out of six different configurations, four heat pipes with wick porosity 0.7, attached at the middle of two large surfaces of the lithium-titanate oxide (LTO) battery can reduce the maximum temperature below 40 °C and differential temperature below 5 °C of a single prismatic battery with airflow at 3 m/s when it was getting discharged at 8 C rating for 446 s.
تدمد: 1948-5093
1948-5085
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::2874a2d95218e316662c0ae7f33ed0ed
https://doi.org/10.1115/1.4056241
حقوق: CLOSED
رقم الأكسشن: edsair.doi...........2874a2d95218e316662c0ae7f33ed0ed
قاعدة البيانات: OpenAIRE