Weekend Light Shifts Evoke Persistent Drosophila Circadian Neural Network Desynchrony

التفاصيل البيبلوغرافية
العنوان: Weekend Light Shifts Evoke Persistent Drosophila Circadian Neural Network Desynchrony
المؤلفون: Daniel J. Rindner, Tony Thai Bui, Tanya L. Leise, Patrick Hwu, Logan Roberts, Thanh C. Vo, Thanh H. Nguyen, Paul J Shaw, Ceazar Nave, Nicholas Pervolarakis, Jerson D. Estrella, Todd C. Holmes
المصدر: The Journal of Neuroscience. 41:5173-5189
بيانات النشر: Society for Neuroscience, 2021.
سنة النشر: 2021
مصطلحات موضوعية: 0301 basic medicine, Timeless, General Neuroscience, Period (gene), Biology, 03 medical and health sciences, 030104 developmental biology, 0302 clinical medicine, medicine.anatomical_structure, Cryptochrome, medicine, Biological neural network, Circadian rhythm, Neuron, Constant light, Neuroscience, 030217 neurology & neurosurgery, Morning
الوصف: We developed a method for single-cell resolution longitudinal bioluminescence imaging of PERIOD (PER) protein and TIMELESS (TIM) oscillations in cultured male adult Drosophila brains that captures circadian circuit-wide cycling under simulated day/night cycles. Light input analysis confirms that CRYPTOCHROME (CRY) is the primary circadian photoreceptor and mediates clock disruption by constant light (LL), and that eye light input is redundant to CRY; 3-h light phase delays (Friday) followed by 3-h light phase advances (Monday morning) simulate the common practice of staying up later at night on weekends, sleeping in later on weekend days then returning to standard schedule Monday morning [weekend light shift (WLS)]. PER and TIM oscillations are highly synchronous across all major circadian neuronal subgroups in unshifted light schedules for 11 d. In contrast, WLS significantly dampens PER oscillator synchrony and rhythmicity in most circadian neurons during and after exposure. Lateral ventral neuron (LNv) oscillations are the first to desynchronize in WLS and the last to resynchronize in WLS. Surprisingly, the dorsal neuron group-3 (DN3s) increase their within-group synchrony in response to WLS. In vivo, WLS induces transient defects in sleep stability, learning, and memory that temporally coincide with circuit desynchrony. Our findings suggest that WLS schedules disrupt circuit-wide circadian neuronal oscillator synchrony for much of the week, thus leading to observed behavioral defects in sleep, learning, and memory.
تدمد: 1529-2401
0270-6474
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::2d44cb4249a39600263ff78408bc3083
https://doi.org/10.1523/jneurosci.3074-19.2021
حقوق: OPEN
رقم الأكسشن: edsair.doi...........2d44cb4249a39600263ff78408bc3083
قاعدة البيانات: OpenAIRE