Synthesis and antimicrobial photodynamic effect of methylene blue conjugated carbon nanotubes on E. coli and S. aureus

التفاصيل البيبلوغرافية
العنوان: Synthesis and antimicrobial photodynamic effect of methylene blue conjugated carbon nanotubes on E. coli and S. aureus
المؤلفون: Mohammed Arshad, Paramanantham Parasuraman, V. T. Anju, S. B. Sruthil Lal, Asad Syed, Alok Sharan, Siddhardha Busi, K. Kaviyarasu, Turki M. Dawoud
المصدر: Photochemical & Photobiological Sciences. 18:563-576
بيانات النشر: Springer Science and Business Media LLC, 2019.
سنة النشر: 2019
مصطلحات موضوعية: 0303 health sciences, biology, Chemistry, Gram-positive bacteria, medicine.medical_treatment, Biofilm, Photodynamic therapy, 02 engineering and technology, 021001 nanoscience & nanotechnology, biology.organism_classification, Antimicrobial, medicine.disease, Microbiology, 03 medical and health sciences, chemistry.chemical_compound, medicine, Photosensitizer, Viability assay, Physical and Theoretical Chemistry, 0210 nano-technology, Cell damage, Methylene blue, 030304 developmental biology
الوصف: Catheter-related bloodstream infections (CRBSIs) are one of the leading causes of high morbidity and mortality in hospitalized patients. The proper management, prevention and treatment of CRBSIs rely on the understanding of these highly resistant bacterial infections. The emergence of such a challenge to public health has resulted in the development of an alternative antimicrobial strategy called antimicrobial photodynamic therapy (aPDT). In the presence of a photosensitizer (PS), light of the appropriate wavelength, and molecular oxygen, aPDT generates reactive oxygen species (ROS) which lead to microbial cell death and cell damage. We investigated the enhanced antibacterial and antibiofilm activities of methylene blue conjugated carbon nanotubes (MBCNTs) on biofilms of E. coli and S. aureus using a laser light source at 670 nm with radiant exposure of 58.49 J cm−2. Photodynamic inactivation in test cultures showed 4.86 and 5.55 log10 reductions in E. coli and S. aureus, respectively. Biofilm inhibition assays, cell viability assays and EPS reduction assays showed higher inhibition in S. aureus than in E. coli, suggesting that pronounced ROS generation occurred due to photodynamic therapy in S. aureus. Results from a study into the mechanism of action proved that the cell membrane is the main target for photodynamic inactivation. Comparatively higher photodynamic inactivation was observed in Gram positive bacteria due to the increased production of free radicals inside these cells. From this study, we conclude that MBCNT can be used as a promising nanocomposite for the eradication of dangerous pathogens on medical devices.
تدمد: 1474-9092
1474-905X
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::2d60cbe15a5a7835064b6e82b806cc78
https://doi.org/10.1039/c8pp00369f
حقوق: OPEN
رقم الأكسشن: edsair.doi...........2d60cbe15a5a7835064b6e82b806cc78
قاعدة البيانات: OpenAIRE