Toxication of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and analogs by monoamine oxidase

التفاصيل البيبلوغرافية
العنوان: Toxication of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and analogs by monoamine oxidase
المؤلفون: Mark S. Baird, Peter Jenner, Gerard Maret, Bernard Testa, Nabil El Tayar, Pierre-Alain Carrupt
المصدر: Biochemical Pharmacology. 40:783-792
بيانات النشر: Elsevier BV, 1990.
سنة النشر: 1990
مصطلحات موضوعية: Pharmacology, Steric effects, Quantitative structure–activity relationship, biology, Monoamine oxidase, Stereochemistry, MPTP, Active site, Biochemistry, chemistry.chemical_compound, chemistry, biology.protein, Phenyl group, Reactivity (chemistry), Monoamine oxidase A
الوصف: MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) elicits motor deficits similar to those observed in Parkinson's disease. Before exerting its neurotoxic action, MPTP must be activated by brain monoamine oxidase (MAO) to the neurotoxic metabolite MPP+ (1-methyl-4-phenylpyridinium). MPTP derivatives differ in their reactivity as MAO substrates and in their neurotoxicity. A structure-reactivity relationship study based on literature data was undertaken in order to determine the key features in the structure of MPTP and analogs that are responsible for the reactivity towards MAO. Thirty-three MPTP derivatives (including MPTP itself) were included in the study. To explain the reactivity towards MAO of the 33 MPTP analogs, different statistical methods (principal component analysis, multiple linear regression analysis) as well as the CoMFA (Comparative Molecular Field Analysis) approach, a new tool in structure-activity correlations, were used. Linear regression analysis failed to yield any predictive model, but suggested some trends. In contrast, the CoMFA approach was successful in correlating structural features and MAO reactivity. Coefficient contour maps showed where differences in the steric field (van der Waals' interactions) are most highly associated with differences in MAO reactivity. Several positive (in the ortho- and meta-position of the phenyl group) and negative (in the para-position of the phenyl group; beyond the N-methyl group) interaction regions were identified. Some structural features of the MAO active site could be postulated. First, the N-methyl group has the ideal size and elicits ideal interactions within the MAO active pocket, while smaller or larger groups are less favorable; second, para-substituent on the phenyl ring produce steric hindrances and are unfavorable to reactivity; third, ortho- and meta-substituents may have stabilizing interactions within the active pocket and are favorable to the reactivity. Moreover the model derived by CoMFA allowed us to make successful predictions of reactivity towards MAO for several additional tetrahydropyridines.
تدمد: 0006-2952
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::3d12e71c92dead658e4e896adfdeddb8
https://doi.org/10.1016/0006-2952(90)90316-d
حقوق: CLOSED
رقم الأكسشن: edsair.doi...........3d12e71c92dead658e4e896adfdeddb8
قاعدة البيانات: OpenAIRE