AKAP150 and its Palmitoylation Contributed to Pain Hypersensitivity Via Facilitating Synaptic Incorporation of GluA1-Containing AMPA Receptor in Spinal Dorsal Horn

التفاصيل البيبلوغرافية
العنوان: AKAP150 and its Palmitoylation Contributed to Pain Hypersensitivity Via Facilitating Synaptic Incorporation of GluA1-Containing AMPA Receptor in Spinal Dorsal Horn
المؤلفون: Xue Bai, Xiao-Dong Hu, Yin-Xia Li, Xiaoyao Ma, Hai-Kun Chen, Yihan Zhang, Zhan-Wei Suo, Yan-Ni Liu, Hu-Hu Bai, Min Gao
المصدر: Molecular Neurobiology. 58:6505-6519
بيانات النشر: Springer Science and Business Media LLC, 2021.
سنة النشر: 2021
مصطلحات موضوعية: Gene knockdown, Kinase, Chemistry, Neuroscience (miscellaneous), AMPA receptor, Cell biology, Cellular and Molecular Neuroscience, Neurology, Palmitoylation, Downregulation and upregulation, Synaptic plasticity, Phosphorylation, lipids (amino acids, peptides, and proteins), Palmitoyl acyltransferase
الوصف: The A-kinase anchoring protein 150 (AKAP150) organizes kinases and phosphatases to regulate AMPA receptors (AMPARs) that are pivotal for synaptic plasticity. AKAP150 itself undergoes S-palmitoylation. However, the roles of AKAP150 and its palmitoylation in spinal nociceptive processing remain unknown. In this study, we found that intraplantar injection of complete Freund's adjuvant (CFA) significantly increased the synaptic expression of AKAP150 and caused a reorganization of AKAP150 signaling complex in spinal dorsal horn. Knockdown of AKAP150 or interruption of its interactions with kinases effectively suppressed the CFA-induced synaptic expression of GluA1 subunit of AMPARs. Our data also showed that an upregulation of AKAP150 palmitoylation was involved in the synaptic redistribution of AKAP150. Inhibition of AKAP150 palmitoylation by expression of palmitoylation-defective mutant AKAP150 (C36, 123S) effectively repressed the CFA-induced phosphorylation and synaptic expression of GluA1 subunit, meanwhile, attenuated the development of mechanical allodynia and thermal hyperalgesia. Furthermore, we found that an increased expression of palmitoyl acyltransferase ZDHHC2 contributed to the upregulation of AKAP150 palmitoylation and GluA1 accumulation in inflamed mouse. These data indicated that AKAP150 and its palmitoylation were involved in AMPA receptor-dependent modification of nociceptive transmission, and the manipulations of AKAP150 signaling complex and palmitoylation might serve as potential therapeutic strategies for persistent pain after inflammation.
تدمد: 1559-1182
0893-7648
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::b8c4564b7ddf6bcd43ee7291e09c20ba
https://doi.org/10.1007/s12035-021-02570-z
حقوق: CLOSED
رقم الأكسشن: edsair.doi...........b8c4564b7ddf6bcd43ee7291e09c20ba
قاعدة البيانات: OpenAIRE