A novel analytical heat source model for cold rolling based on the energy method and unified yield criterion

التفاصيل البيبلوغرافية
العنوان: A novel analytical heat source model for cold rolling based on the energy method and unified yield criterion
المؤلفون: Yufeng Zhang, Xu Li, Meiying Zhao, Fuquan Qu, Yuhe Zhang, Wen Peng, Dewen Zhao, Hong Shuang Di, Dianhua Zhang
بيانات النشر: Research Square Platform LLC, 2022.
سنة النشر: 2022
الوصف: Accurate calculation of the heat source in the roll gap during the cold rolling process is the basis for a well-designed coolant system, which is particularly important for reducing roll wear and improving the flatness quality of strip steel. Although many established numerical models have high precision in calculating the work roll temperature, complex modeling processes and large calculation times result in the inability to predict work roll temperature quickly for the application of automatic control systems. Therefore, the authors develop a new analytical heat source model to calculate the axial temperature distribution of the work roll in the cold rolling process. First, according to the deformation characteristics of strip cold rolling, the deformation zone is divided into a plastic zone and two elastic zones, and the length of each deformation zone is calculated considering the effect of tension. Then friction heat generated in the elastic zone is calculated. Second, new exponential velocity and corresponding strain-rate fields satisfying kinematically admissible conditions are proposed to calculate the deformation heat and friction heat generated in the plastic zone. Finally, the work roll temperature prediction model is established by contemplating the heat source of the roll gap, emulsion heat transfer, air cooling, and contact heat transfer with the intermediate roll. By repeatedly optimizing the weighted coefficient d of intermediate principal shear stress on the yield criterion, the maximum error between the calculated results and the actual measured cold roll temperature data is reduced to 3.1%. Then, the effects of the reduction ratio, rolling speed, and resistance to deformation on the deformation heat and friction heat are discussed. And the variation of temperature field of the work roll with time is analyzed quantitatively.
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::d5ed3819b356fe031e1e92f5d6aacca3
https://doi.org/10.21203/rs.3.rs-1645911/v1
حقوق: OPEN
رقم الأكسشن: edsair.doi...........d5ed3819b356fe031e1e92f5d6aacca3
قاعدة البيانات: OpenAIRE