UBMTR: Unsupervised Boltzmann machine-based time-aware recommendation system

التفاصيل البيبلوغرافية
العنوان: UBMTR: Unsupervised Boltzmann machine-based time-aware recommendation system
المؤلفون: Siddharth Swarup Rautaray, Manjusha Pandey, GM Harshvardhan, Mahendra Kumar Gourisaria
المصدر: Journal of King Saud University - Computer and Information Sciences. 34:6400-6413
بيانات النشر: Elsevier BV, 2022.
سنة النشر: 2022
مصطلحات موضوعية: General Computer Science, business.industry, Computer science, Deep learning, Feature extraction, Boltzmann machine, 020206 networking & telecommunications, Markov chain Monte Carlo, Unstructured data, 02 engineering and technology, Recommender system, Machine learning, computer.software_genre, Missing data, symbols.namesake, 0202 electrical engineering, electronic engineering, information engineering, Collaborative filtering, symbols, 020201 artificial intelligence & image processing, Artificial intelligence, business, computer
الوصف: Visual media, in today’s world, has swept across most forms of day to day communication. In the paradigm of generative modelling, restricted Boltzmann machines (RBMs) are used to solve complex tasks such as feature extraction, neuroimaging, collaborative filtering, radar target cognition, etc. In this paper, we implement an unsupervised Boltzmann machine-based time-aware recommendation system (UBMTR) which detects underlying hidden features in user-movie ratings data in connection with the time at which each rating was made (temporal information). The model takes ratings and time as a dual-input and outputs binary values via the contrastive divergence algorithm which samples from a Monte Carlo Markov Chain. Arguably, there exists a correlation between the content requested and the temporal conditions, which is exactly what our model tries to exploit. There is seldom any work in the field of recommender systems built using Boltzmann machines that incorporate temporal information, which necessitates research in this domain. RBMs are adept at pattern completion to tackle missing values, and can deal with imbalanced datasets and unstructured data by encoding raw data into latent variables. Using RBM, the UBMTR outperforms many earlier made attempts made at recommendation systems done through CF and deep learning or their hybridized models.
تدمد: 1319-1578
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::f25ffbd3ebe5e372402879e8b0d8f208
https://doi.org/10.1016/j.jksuci.2021.01.017
حقوق: OPEN
رقم الأكسشن: edsair.doi...........f25ffbd3ebe5e372402879e8b0d8f208
قاعدة البيانات: OpenAIRE