Syringyl lignin production in conifers: Proof of concept in a Pine tracheary element system

التفاصيل البيبلوغرافية
العنوان: Syringyl lignin production in conifers: Proof of concept in a Pine tracheary element system
المؤلفون: Barbara Geddes, Fachuang Lu, Armin Wagner, John Ralph, Lorelle Phillips, Heather Flint, Yuki Tobimatsu
المصدر: Proceedings of the National Academy of Sciences. 112:6218-6223
بيانات النشر: Proceedings of the National Academy of Sciences, 2015.
سنة النشر: 2015
مصطلحات موضوعية: Magnetic Resonance Spectroscopy, Softwood, Materials science, Polymers, Radiata, Lignin, Gas Chromatography-Mass Spectrometry, chemistry.chemical_compound, Cotransformation, Cell Wall, Gene Expression Regulation, Plant, Botany, Caffeic acid, Hardwood, Biomass, Transgenes, Plant Proteins, Multidisciplinary, biology, Pinus radiata, Biological Sciences, Pinus, Plants, Genetically Modified, biology.organism_classification, Tracheophyta, Metabolic Engineering, chemistry, Sinapyl alcohol, Alcohols, Biofuels
الوصف: Conifers (softwoods) naturally lack syringyl units in their lignins, rendering lignocellulosic materials from such species more difficult to process than syringyl-rich hardwood species. Using a transformable Pinus radiata tracheary element (TE) system as an experimental platform, we investigated whether metabolic engineering can be used to create syringyl lignin in conifers. Pyrolysis-GC/MS and 2D-NMR analysis of P. radiata TE cultures transformed to express ferulate 5-hydroxylase (F5H) and caffeic acid O-methyltransferase (COMT) from Liquidambar styraciflua confirmed the production and incorporation of sinapyl alcohol into the lignin polymer. Transformation with F5H was sufficient for the production of syringyl lignin in TEs, but cotransformation with COMT improved its formation. In addition, lower levels of the pathway intermediate 5-hydroxyconiferyl alcohol were evidenced in cotransformation experiments, indicating that the introduction of the COMT overcame the inefficiency of the native pine methyltransferases for supporting sinapyl alcohol production.Our results provide the proof of concept that it is possible to generate a lignin polymer that contains syringyl units in softwood species such as P. radiata, suggesting that it might be possible to retain the outstanding fiber properties of softwoods while imbuing them with the lignin characteristics of hardwoods that are more favorable for industrial processing.
تدمد: 1091-6490
0027-8424
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::00d892f0c1aa9e1493d9ea304f206f5b
https://doi.org/10.1073/pnas.1411926112
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....00d892f0c1aa9e1493d9ea304f206f5b
قاعدة البيانات: OpenAIRE