Cloning and expression of R-Spondin1 in different vertebrates suggests a conserved role in ovarian development

التفاصيل البيبلوغرافية
العنوان: Cloning and expression of R-Spondin1 in different vertebrates suggests a conserved role in ovarian development
المؤلفون: David Crews, Craig A. Smith, Christina M. Shoemaker, Kelly N. Roeszler, Andrew H. Sinclair, Joanna H. Queen
المصدر: BMC Developmental Biology
BMC Developmental Biology, Vol 8, Iss 1, p 72 (2008)
بيانات النشر: BioMed Central, 2008.
سنة النشر: 2008
مصطلحات موضوعية: endocrine system, Embryo, Nonmammalian, Somatic cell, Molecular Sequence Data, Ovary, Chick Embryo, Biology, FOXL2 Gene, Mice, Wnt4 Protein, medicine, Animals, Humans, Amino Acid Sequence, Cloning, Molecular, RSPO1, lcsh:QH301-705.5, Sexual differentiation, Fadrozole, Aromatase Inhibitors, Reverse Transcriptase Polymerase Chain Reaction, Wnt signaling pathway, Temperature, Gene Expression Regulation, Developmental, Sex Determination Processes, Embryo, Mammalian, Molecular biology, Turtles, Wnt Proteins, medicine.anatomical_structure, lcsh:Biology (General), Female, Thrombospondins, Developmental biology, Sequence Alignment, Germ cell, Developmental Biology, Research Article
الوصف: Background R-Spondin1 (Rspo1) is a novel regulator of the Wnt/β-catenin signalling pathway. Loss-of-function mutations in human RSPO1 cause testicular differentiation in 46, XX females, pointing to a role in ovarian development. Here we report the cloning and comparative expression analysis of R-SPONDIN1 orthologues in the mouse, chicken and red-eared slider turtle, three species with different sex-determining mechanisms. Evidence is presented that this gene is an ancient component of the vertebrate ovary-determining pathway. Results Gonadal RSPO1 gene expression is female up-regulated in the embryonic gonads in each species at the onset of sexual differentiation. In the mouse gonad, Rspo1 mRNA is expressed in the somatic cell lineage at the time of ovarian differentiation (E12.5–E15.5), with little expression in germ cells. However, the protein is localised in the cytoplasm and at the cell surface of both somatic (pre-follicular) and germ cells. In the chicken embryo, RSPO1 expression becomes elevated in females at the time of ovarian differentiation, coinciding with female-specific activation of the FOXL2 gene and estrogen synthesis. RSPO1 protein in chicken is localised in the outer cortical zone of the developing ovary, the site of primordial follicle formation and germ cell differentiation. Inhibition of estrogen synthesis with a specific aromatase inhibitor results in a decline in chicken RSPO1 expression, indicating that RSPO1 is influenced by estrogen. In the red-eared slider turtle, which exhibits temperature-dependent sex determination, up-regulation of RSPO1 occurs during the temperature-sensitive period, when gonadal development is responsive to temperature. Accordingly, RSPO1 expression is temperature-responsive, and is down-regulated in embryos shifted from female- to male-producing incubation temperatures. Conclusion These results indicate that RSPO1 is up-regulated in the embryonic gonads of female vertebrates with different sex-determining mechanisms. In all instances, RSPO1 is expressed in the incipient ovary. These findings suggest that R-SPONDIN1 is an ancient, conserved part of the vertebrate ovary-determining pathway.
اللغة: English
تدمد: 1471-213X
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0168b40319519535766a06aed46c67e4
http://europepmc.org/articles/PMC2519078
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....0168b40319519535766a06aed46c67e4
قاعدة البيانات: OpenAIRE