Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography

التفاصيل البيبلوغرافية
العنوان: Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography
المؤلفون: Phil Jordan, Owen Fenton, O. Shine, Per-Erik Mellander, Paul N. C. Murphy, Paul Dunlop, Ian Thomas
المساهمون: Department of Agriculture, Food and the Marine, Teagasc Walsh Fellowship Programme
المصدر: International Journal of Applied Earth Observation and Geoinformation. 54:38-52
بيانات النشر: Elsevier BV, 2017.
سنة النشر: 2017
مصطلحات موضوعية: Hydrology, Topographic Wetness Index, Global and Planetary Change, LiDAR, 0208 environmental biotechnology, DEM, Elevation, Diffuse pollution, 02 engineering and technology, Management, Monitoring, Policy and Law, Surface runoff, 020801 environmental engineering, law.invention, Geography, Lidar, law, Critical source area, Microtopography, Radar, Drainage, Computers in Earth Sciences, Digital elevation model, Scale (map), Earth-Surface Processes
الوصف: Defining critical source areas (CSAs) of diffuse pollution in agricultural catchments depends upon the accurate delineation of hydrologically sensitive areas (HSAs) at highest risk of generating surface runoff pathways. In topographically complex landscapes, this delineation is constrained by digital elevation model (DEM) resolution and the influence of microtopographic features. To address this, optimal DEM resolutions and point densities for spatially modelling HSAs were investigated, for onward use in delineating CSAs. The surface runoff framework was modelled using the Topographic Wetness Index (TWI) and maps were derived from 0.25 m LiDAR DEMs (40 bare-earth points m −2 ), resampled 1 m and 2 m LiDAR DEMs, and a radar generated 5 m DEM. Furthermore, the resampled 1 m and 2 m LiDAR DEMs were regenerated with reduced bare-earth point densities (5, 2, 1, 0.5, 0.25 and 0.125 points m −2 ) to analyse effects on elevation accuracy and important microtopographic features. Results were compared to surface runoff field observations in two 10 km 2 agricultural catchments for evaluation. Analysis showed that the accuracy of modelled HSAs using different thresholds (5%, 10% and 15% of the catchment area with the highest TWI values) was much higher using LiDAR data compared to the 5 m DEM (70–100% and 10–84%, respectively). This was attributed to the DEM capturing microtopographic features such as hedgerow banks, roads, tramlines and open agricultural drains, which acted as topographic barriers or channels that diverted runoff away from the hillslope scale flow direction. Furthermore, the identification of ‘breakthrough’ and ‘delivery’ points along runoff pathways where runoff and mobilised pollutants could be potentially transported between fields or delivered to the drainage channel network was much higher using LiDAR data compared to the 5 m DEM (75–100% and 0–100%, respectively). Optimal DEM resolutions of 1–2 m were identified for modelling HSAs, which balanced the need for microtopographic detail as well as surface generalisations required to model the natural hillslope scale movement of flow. Little loss of vertical accuracy was observed in 1–2 m LiDAR DEMs with reduced bare-earth point densities of 2–5 points m −2 , even at hedgerows. Further improvements in HSA models could be achieved if soil hydrological properties and the effects of flow sinks (filtered out in TWI models) on hydrological connectivity are also considered.
تدمد: 0303-2434
DOI: 10.1016/j.jag.2016.08.012
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::01f21e5c851ce40f6585833474cf0e60
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....01f21e5c851ce40f6585833474cf0e60
قاعدة البيانات: OpenAIRE
الوصف
تدمد:03032434
DOI:10.1016/j.jag.2016.08.012